Assessment of the variational quantum eigensolver: application to the
Heisenberg model
- URL: http://arxiv.org/abs/2201.05065v2
- Date: Fri, 17 Jun 2022 07:16:32 GMT
- Title: Assessment of the variational quantum eigensolver: application to the
Heisenberg model
- Authors: Manpreet Singh Jattana, Fengping Jin, Hans De Raedt, Kristel
Michielsen
- Abstract summary: We present and analyze large-scale simulation results of a hybrid quantum-classical variational method to calculate the ground state energy of the anti-ferromagnetic Heisenberg model.
We predict that a fully functional quantum computer with 100 qubits can calculate the ground state energy with a relatively small error.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present and analyze large-scale simulation results of a hybrid
quantum-classical variational method to calculate the ground state energy of
the anti-ferromagnetic Heisenberg model. Using a massively parallel universal
quantum computer simulator, we observe that a low-depth-circuit ansatz
advantageously exploits the efficiently preparable N\'{e}el initial state,
avoids potential barren plateaus, and works for both one- and two-dimensional
lattices. The analysis reflects the decisive ingredients required for a
simulation by comparing different ans\"{a}tze, initial parameters, and
gradient-based versus gradient-free optimizers. Extrapolation to the
thermodynamic limit accurately yields the analytical value for the ground state
energy, given by the Bethe ansatz. We predict that a fully functional quantum
computer with 100 qubits can calculate the ground state energy with a
relatively small error.
Related papers
- Demonstration of a variational quantum eigensolver with a solid-state spin system under ambient conditions [15.044543674753308]
Quantum simulators offer the potential to utilize the quantum nature of a physical system to study another physical system.
The variational-quantum-eigensolver algorithm is a particularly promising application for investigating molecular electronic structures.
Spin-based solid-state qubits have the advantage of long decoherence time and high-fidelity quantum gates.
arXiv Detail & Related papers (2024-07-23T09:17:06Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Modeling Stochastic Chemical Kinetics on Quantum Computers [0.0]
We show how quantum algorithms can be employed to model chemical kinetics using the Schl"ogl Model of a trimolecular reaction network.
Our quantum computed results from both noisy and noiseless quantum simulations agree within a few percent with the classically computed eigenvalues and zeromode.
arXiv Detail & Related papers (2024-04-12T18:53:38Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Heisenberg-limited ground state energy estimation for early
fault-tolerant quantum computers [3.7747526957907303]
We propose an alternative method to estimate the ground state energy of a Hamiltonian with Heisenberg-limited precision scaling.
Our algorithm also produces an approximate cumulative distribution function of the spectral measure.
arXiv Detail & Related papers (2021-02-22T20:21:56Z) - Variational preparation of finite-temperature states on a quantum
computer [0.0]
Preparation of thermal equilibrium states is important for the simulation of condensed-matter and cosmology systems.
We present a method to prepare such mixed states with unitary operators, and demonstrate this technique experimentally using a gate-based quantum processor.
arXiv Detail & Related papers (2020-12-07T18:19:58Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.