論文の概要: ACT-SQL: In-Context Learning for Text-to-SQL with
Automatically-Generated Chain-of-Thought
- arxiv url: http://arxiv.org/abs/2310.17342v1
- Date: Thu, 26 Oct 2023 12:16:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 20:41:21.968068
- Title: ACT-SQL: In-Context Learning for Text-to-SQL with
Automatically-Generated Chain-of-Thought
- Title(参考訳): ACT-SQL: 自動生成チェイン・オブ・サートによるテキストからSQLへのインコンテキスト学習
- Authors: Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen Xu, Kai Yu
- Abstract要約: 大規模言語モデル(LLM)は、様々なドメインやタスクにおいて強力な能力を持つことが証明されている。
我々は、スキーマリンクに類似した方法で、チェーン・オブ・シンクレット(CoT)プロンプトを設計する。
我々は、テキストからテキストへのマルチターンタスクにコンテキスト内学習手法を拡張した。
- 参考スコア(独自算出の注目度): 24.1320473171017
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently Large Language Models (LLMs) have been proven to have strong
abilities in various domains and tasks. We study the problem of prompt
designing in the text-to-SQL task and attempt to improve the LLMs' reasoning
ability when generating SQL queries. Besides the trivial few-shot in-context
learning setting, we design our chain-of-thought (CoT) prompt with a similar
method to schema linking. We provide a method named ACT-SQL to automatically
generate auto-CoT exemplars and thus the whole process doesn't need manual
labeling. Our approach is cost-saving since we only use the LLMs' API call once
when generating one SQL query. Furthermore, we extend our in-context learning
method to the multi-turn text-to-SQL task. The experiment results show that the
LLMs' performance can benefit from our ACT-SQL approach. Our approach achieves
SOTA performance on the Spider dev set among existing in-context learning
approaches.
- Abstract(参考訳): 最近、LLM(Large Language Models)は、様々なドメインやタスクに強力な能力があることが証明されている。
本研究では,テキストからSQLへのタスクを迅速に設計する問題について検討し,SQLクエリを生成する際のLCMの推論能力の向上を試みる。
簡単なインコンテキスト学習設定に加えて、スキーマリンクに類似した方法でチェーン・オブ・シンクレット(CoT)プロンプトを設計します。
ACT-SQLというメソッドで自動CoTの例を自動生成するので、プロセス全体が手作業によるラベリングを必要としない。
LLMのAPIコールを1つのSQLクエリ生成時に一度だけ使用するため、当社のアプローチはコスト削減です。
さらに、コンテキスト内学習手法をマルチターンテキストからsqlへのタスクに拡張する。
実験の結果,LLMの性能はACT-SQLアプローチの恩恵を受けることが示された。
本手法は,既存の文脈内学習手法の中で,Spider開発セット上でのSOTA性能を実現する。
関連論文リスト
- PTD-SQL: Partitioning and Targeted Drilling with LLMs in Text-to-SQL [54.304872649870575]
大規模言語モデル(LLM)は、テキスト・トゥ・センス・タスクの強力なツールとして登場した。
本研究では,クエリグループパーティショニングを用いることで,単一問題に特有の思考プロセスの学習に集中できることを示す。
論文 参考訳(メタデータ) (2024-09-21T09:33:14Z) - SQLfuse: Enhancing Text-to-SQL Performance through Comprehensive LLM Synergy [24.919119901664843]
本稿では,オープンソースのLarge Language Models(LLM)を,クエリの精度とユーザビリティを高めるための一連のツールに統合する,堅牢なシステムを提案する。
Ant GroupによるSpider Leaderboardとデプロイメントのリードパフォーマンスによって実証された。
論文 参考訳(メタデータ) (2024-07-19T06:01:57Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - CoE-SQL: In-Context Learning for Multi-Turn Text-to-SQL with Chain-of-Editions [22.493487741249716]
大規模言語モデル(LLM)は、様々なドメインやタスクにおいて印象的な機能を持つことが実証されている。
マルチターンテキスト・ツー・タスクにおけるプロンプト設計の問題について検討し,LLMの推論能力の向上を図る。
論文 参考訳(メタデータ) (2024-05-04T16:56:14Z) - PET-SQL: A Prompt-Enhanced Two-Round Refinement of Text-to-SQL with Cross-consistency [19.067737007347613]
スパイダーベンチマークで新しいSOTA結果が得られ、実行精度は87.6%である。
提案手法は, 87.6%の精度で, スパイダーベンチマークで新しいSOTA結果が得られる。
論文 参考訳(メタデータ) (2024-03-13T02:32:41Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
Prompt"は、Text-to-LLMのいくつかのショットプロンプト機能を改善するように設計されている。
Prompt"は、ラベル付きデータが少なく、テキスト内学習における従来のアプローチよりも大きなマージンで優れている。
emphPromptはテキスト内学習における従来の手法よりも優れており,ラベル付きデータはほとんどない。
論文 参考訳(メタデータ) (2023-11-06T05:24:06Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - Retrieval-augmented GPT-3.5-based Text-to-SQL Framework with
Sample-aware Prompting and Dynamic Revision Chain [21.593701177605652]
サンプルと動的リビジョンチェーンを含むテキスト・ツー・アウェア・プロンプト・フレームワークを提案する。
提案手法は,質問項目のサンプルと詳細な情報を含む。
人間の介入なしに実行可能で正確なスクルを生成するために、我々は、きめ細かいフィードバックを反復的に適応する動的リビジョンチェーンを設計する。
論文 参考訳(メタデータ) (2023-07-11T07:16:22Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Divide and Prompt: Chain of Thought Prompting for Text-to-SQL [0.03807314298073299]
CoT(Chain-of-Thought)は,大規模言語モデル(LLM)と組み合わせることで,複雑な推論タスクの促進的な結果が得られた。
本稿では,まずタスクをサブタスクに分割し,次にCoTを介して各サブタスクにアプローチするDivide-and-Promptを提案する。
論文 参考訳(メタデータ) (2023-04-23T06:52:35Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
我々は最近提案されたQDMR(QDMR)という意味表現を活用している。
質問やQDMR構造(非専門家によって注釈付けされたり、自動予測されたりする)、回答が与えられたら、我々は自動的にsqlクエリを合成できる。
本結果は,NL-ベンチマークデータを用いて訓練したモデルと,弱い教師付きモデルが競合することを示す。
論文 参考訳(メタデータ) (2021-12-12T20:02:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。