論文の概要: AI-native Interconnect Framework for Integration of Large Language Model
Technologies in 6G Systems
- arxiv url: http://arxiv.org/abs/2311.05842v1
- Date: Fri, 10 Nov 2023 02:59:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 16:10:37.815562
- Title: AI-native Interconnect Framework for Integration of Large Language Model
Technologies in 6G Systems
- Title(参考訳): 6Gシステムにおける大規模言語モデル統合のためのAIネイティブインターコネクトフレームワーク
- Authors: Sasu Tarkoma, Roberto Morabito, Jaakko Sauvola
- Abstract要約: 本稿では,Large Language Models (LLM) とGeneralized Pretrained Transformer (GPT) のシームレスな統合を6Gシステムで検討する。
LLMとGPTは、従来の前世代のAIと機械学習(ML)アルゴリズムとともに、共同で中心的なステージに立つ。
- 参考スコア(独自算出の注目度): 3.5370806221677245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution towards 6G architecture promises a transformative shift in
communication networks, with artificial intelligence (AI) playing a pivotal
role. This paper delves deep into the seamless integration of Large Language
Models (LLMs) and Generalized Pretrained Transformers (GPT) within 6G systems.
Their ability to grasp intent, strategize, and execute intricate commands will
be pivotal in redefining network functionalities and interactions. Central to
this is the AI Interconnect framework, intricately woven to facilitate
AI-centric operations within the network. Building on the continuously evolving
current state-of-the-art, we present a new architectural perspective for the
upcoming generation of mobile networks. Here, LLMs and GPTs will
collaboratively take center stage alongside traditional pre-generative AI and
machine learning (ML) algorithms. This union promises a novel confluence of the
old and new, melding tried-and-tested methods with transformative AI
technologies. Along with providing a conceptual overview of this evolution, we
delve into the nuances of practical applications arising from such an
integration. Through this paper, we envisage a symbiotic integration where AI
becomes the cornerstone of the next-generation communication paradigm, offering
insights into the structural and functional facets of an AI-native 6G network.
- Abstract(参考訳): 6Gアーキテクチャへの進化は、人工知能(AI)が重要な役割を果たし、通信ネットワークの変革的なシフトを約束する。
本稿では,Large Language Models (LLMs) とGeneralized Pretrained Transformer (GPT) を6Gシステムでシームレスに統合する方法について述べる。
意図を把握し、戦略を立て、複雑なコマンドを実行する能力は、ネットワーク機能やインタラクションを再定義する上で重要である。
この中心となるのは、ネットワーク内のAI中心の操作を促進するために、複雑に織られたAIインターコネクトフレームワークである。
最先端の継続的な進化を基盤として,次世代のモバイルネットワークに対する新しいアーキテクチャ的視点を提案する。
ここでは、LLMとGPTが、従来の前世代AIと機械学習(ML)アルゴリズムと並行して、中心的なステージに立つ。
この連合は、古い、そして新しい、試行錯誤した手法と、変革的なAI技術との新たな融合を約束する。
この進化の概念的な概要を提供するとともに、そのような統合から生じる実用的な応用のニュアンスを考察する。
本稿では,AIが次世代コミュニケーションパラダイムの基盤となり,AIネイティブな6Gネットワークの構造と機能に関する洞察を提供する共生的な統合を提案する。
関連論文リスト
- Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - Decentralized Multi-Party Multi-Network AI for Global Deployment of 6G Wireless Systems [31.754166695074353]
本稿では、大規模にデプロイされた6GネットワークにAIを統合するための分散マルチパーティ・マルチネットワークAI(DMMAI)フレームワークを紹介する。
DMMAIは、さまざまなネットワークプラットフォームにわたるAI駆動コントロールを調和させ、自らを自律的に構成、監視、修復するネットワークを促進する。
弊社のアプローチでは、マルチネットワークオーケストレーションとAIコントロールの統合について検討し、6GネットワークにおけるAI駆動のコーディネーションのための標準フレームワークにおける重要なギャップを埋める。
論文 参考訳(メタデータ) (2024-04-15T15:21:25Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、新しいクラウド-エッジコラボレーションパラダイムを概説する。
実例として,無線通信システムにおける最大和率を達成するために,このフレームワークをオーケストレーションに適用する。
論文 参考訳(メタデータ) (2023-10-26T15:19:40Z) - In-situ Model Downloading to Realize Versatile Edge AI in 6G Mobile
Networks [61.416494781759326]
In-situモデルダウンロードは、ネットワーク内のAIライブラリからダウンロードすることで、デバイス上のAIモデルを透過的でリアルタイムに置き換えることを目的としている。
提示されたフレームワークの重要なコンポーネントは、ダウンロードされたモデルを深さレベル、パラメータレベル、ビットレベルで動的に圧縮する一連のテクニックである。
我々は,3層(エッジ,ローカル,中央)AIライブラリのキー機能を備えた,インサイトモデルダウンロードのデプロイ用にカスタマイズされた6Gネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T13:41:15Z) - Transformer-Empowered 6G Intelligent Networks: From Massive MIMO
Processing to Semantic Communication [71.21459460829409]
トランスフォーマーとして知られる新しいディープラーニングアーキテクチャを導入し、その6Gネットワーク設計への影響について論じる。
具体的には、6GネットワークにおけるMIMO(Multiple-input multiple-output)システムと様々な意味コミュニケーション問題に対するトランスフォーマーベースのソリューションを提案する。
論文 参考訳(メタデータ) (2022-05-08T03:22:20Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6Gはワイヤレスの進化を「コネクテッドモノ」から「コネクテッドインテリジェンス」に変革する
ディープラーニングとビッグデータ分析に基づくAIシステムは、膨大な計算と通信資源を必要とする。
エッジAIは、センサー、通信、計算、インテリジェンスをシームレスに統合する6Gの破壊的技術として際立っている。
論文 参考訳(メタデータ) (2021-11-24T11:47:16Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
エッジインテリジェンス(エッジインテリジェンス、Edge Intelligence、別名エッジネイティブ人工知能(AI))は、AI、通信ネットワーク、モバイルエッジコンピューティングのシームレスな統合に焦点を当てた新興技術フレームワークである。
本稿では、6GにおけるエッジネイティブAIの重要な要件と課題を特定する。
論文 参考訳(メタデータ) (2020-10-01T02:16:40Z) - Federated Learning for 6G Communications: Challenges, Methods, and
Future Directions [71.31783903289273]
6Gとフェデレーション学習の統合を導入し、6Gのための潜在的なフェデレーション学習アプリケーションを提供する。
6G通信の文脈において,重要な技術的課題,それに対応するフェデレーション学習手法,および今後のフェデレーション学習研究のためのオープンな課題について述べる。
論文 参考訳(メタデータ) (2020-06-04T15:17:19Z) - Towards Ubiquitous AI in 6G with Federated Learning [43.318721658647014]
Federated Learning(FL)は、異種および潜在的に大規模ネットワークにおけるデータ駆動型AIソリューションを可能にする、新興の分散AIソリューションである。
FLベースのネットワークアーキテクチャを提案し、6Gで期待される新しい課題に対処する可能性について論じる。
論文 参考訳(メタデータ) (2020-04-26T13:05:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。