論文の概要: The impact of using an AI chatbot to respond to patient messages
- arxiv url: http://arxiv.org/abs/2310.17703v1
- Date: Thu, 26 Oct 2023 18:03:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-30 15:58:47.421749
- Title: The impact of using an AI chatbot to respond to patient messages
- Title(参考訳): aiチャットボットが患者のメッセージに反応する影響
- Authors: Shan Chen, Marco Guevara, Shalini Moningi, Frank Hoebers, Hesham
Elhalawani, Benjamin H. Kann, Fallon E. Chipidza, Jonathan Leeman, Hugo
J.W.L. Aerts, Timothy Miller, Guergana K. Savova, Raymond H. Mak, Maryam
Lustberg, Majid Afshar, Danielle S. Bitterman
- Abstract要約: ドキュメンテーションの負担はクリニックのバーンアウトに大きく貢献する。
多くの病院が電子カルテシステムに積極的に統合している。
我々は,患者の質問に対する臨床医の回答作成を支援するために,大規模言語モデルの有用性を初めて検討する。
- 参考スコア(独自算出の注目度): 4.243020918808522
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Documentation burden is a major contributor to clinician burnout, which is
rising nationally and is an urgent threat to our ability to care for patients.
Artificial intelligence (AI) chatbots, such as ChatGPT, could reduce clinician
burden by assisting with documentation. Although many hospitals are actively
integrating such systems into electronic medical record systems, AI chatbots
utility and impact on clinical decision-making have not been studied for this
intended use. We are the first to examine the utility of large language models
in assisting clinicians draft responses to patient questions. In our two-stage
cross-sectional study, 6 oncologists responded to 100 realistic synthetic
cancer patient scenarios and portal messages developed to reflect common
medical situations, first manually, then with AI assistance.
We find AI-assisted responses were longer, less readable, but provided
acceptable drafts without edits 58% of time. AI assistance improved efficiency
77% of time, with low harm risk (82% safe). However, 7.7% unedited AI responses
could severely harm. In 31% cases, physicians thought AI drafts were
human-written. AI assistance led to more patient education recommendations,
fewer clinical actions than manual responses. Results show promise for AI to
improve clinician efficiency and patient care through assisting documentation,
if used judiciously. Monitoring model outputs and human-AI interaction remains
crucial for safe implementation.
- Abstract(参考訳): ドキュメントの負担は臨床医のバーンアウトの大きな貢献であり、全国的に増加しており、患者のケア能力に対する緊急の脅威となっている。
ChatGPTのような人工知能(AI)チャットボットは、ドキュメントの支援によって臨床の負担を軽減することができる。
多くの病院が電子カルテシステムにそうしたシステムを積極的に組み込んでいるが、AIチャットボットの有用性と臨床意思決定への影響は研究されていない。
臨床医の患者質問に対する回答作成支援に, 大規模言語モデルの有用性を初めて検討した。
2段階の横断研究で、6人の腫瘍医が100のリアルな合成がん患者のシナリオと、一般的な医療状況を反映したポータルメッセージに回答しました。
AIによる応答は長く、読めないが、58%の時間を編集せずに許容できるドラフトを提供した。
AIアシストは効率を77%改善し、損傷リスクは低い(82%が安全)。
しかし、7.7%の未処理のAI応答は深刻なダメージを与える可能性がある。
31%の症例では、医師はAIドラフトは人間によるものだと考えた。
AI支援により、患者の教育勧告が増加し、手動の反応よりも臨床行動が少なくなった。
以上の結果から,aiはドキュメント作成を支援することで臨床医の効率と患者のケアを改善することが期待される。
安全な実装には、モデル出力の監視と人間とAIのインタラクションが不可欠だ。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Improving Clinical Documentation with AI: A Comparative Study of Sporo AI Scribe and GPT-4o mini [0.0]
Sporo HealthのAI書式はOpenAIのGPT-4o Miniに対して評価された。
結果から,スポロAIはGPT-4o Miniを一貫して上回り,リコール率,精度,F1スコア全体を達成した。
論文 参考訳(メタデータ) (2024-10-20T22:48:40Z) - Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation [0.0]
本稿では,クリニカルドキュメンテーションプロセスの合理化のための生成AI(Artificial Intelligence)の可能性について検討する。
本稿では,自然言語処理 (NLP) と自動音声認識 (ASR) 技術を用いて患者と臨床の相互作用を転写するケーススタディを提案する。
この研究は、時間節約、ドキュメント品質の改善、患者中心のケアの改善など、このアプローチの利点を強調している。
論文 参考訳(メタデータ) (2024-05-28T16:43:41Z) - Explainable AI Enhances Glaucoma Referrals, Yet the Human-AI Team Still Falls Short of the AI Alone [6.740852152639975]
各種のAI説明は、提供者が即時または緊急の専門紹介を必要とする患者を区別するのにどのように役立つかを検討する。
我々は、高リスク患者を特定するためのプロキシとして、通常のアイケアデータから緑内障手術のニーズを予測するための説明可能なAIアルゴリズムを構築した。
本研究は,本質的・ポストホックな説明性を取り入れ,ヒト-AIチームのパフォーマンスを評価するために,眼科医とオンライン研究を行った。
論文 参考訳(メタデータ) (2024-05-24T03:01:20Z) - A General-purpose AI Avatar in Healthcare [1.5081825869395544]
本稿では、医療におけるチャットボットの役割に焦点を当て、AIインタラクションをより患者にアピールするためのアバターの使用について検討する。
汎用AIアバターアプリケーションのフレームワークを3カテゴリのプロンプト辞書とプロンプト改善機構を用いて実証する。
2段階のアプローチでは、汎用AI言語モデルを微調整し、異なるAIアバターを作成して、ユーザと医療上の問題について議論することが提案されている。
論文 参考訳(メタデータ) (2024-01-10T03:44:15Z) - Understanding the Effect of Counterfactual Explanations on Trust and
Reliance on AI for Human-AI Collaborative Clinical Decision Making [5.381004207943597]
本研究は,7人のセラピストと10人のレイパーを対象に,ストローク後生存者の運動の質を評価するための実験を行った。
我々は2種類のAI説明なしで、彼らのパフォーマンス、タスクの合意レベル、AIへの依存を分析した。
我々の研究は、AIモデルの精度をより正確に見積り、間違ったAI出力に対する過度な信頼を減らすために、反事実的説明の可能性について論じている。
論文 参考訳(メタデータ) (2023-08-08T16:23:46Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
人工知能(AI)とロボットコーチは、社会的相互作用を通じてリハビリテーション運動における患者の関与を改善することを約束する。
これまでの研究は、AIやロボットコーチの運動を自動的に監視する可能性を探ったが、デプロイは依然として難しい課題だ。
我々は,AIとロボットコーチが患者の運動をどのように操作し,指導するかに関する詳細な設計仕様を提示する。
論文 参考訳(メタデータ) (2021-06-15T22:06:39Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。