論文の概要: Learning active tactile perception through belief-space control
- arxiv url: http://arxiv.org/abs/2312.00215v1
- Date: Thu, 30 Nov 2023 21:54:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 16:13:20.479717
- Title: Learning active tactile perception through belief-space control
- Title(参考訳): 信念空間制御による能動的触覚の学習
- Authors: Jean-Fran\c{c}ois Tremblay, David Meger, Francois Hogan, Gregory Dudek
- Abstract要約: 本稿では,創造的世界モデルを開発することにより,触覚探索政策を自律的に学習する手法を提案する。
本手法は,目的が所望のオブジェクト特性を推定することである3つのシミュレーションタスクに対して評価する。
提案手法は, 所望のプロパティに関する情報を直感的に収集するポリシーを発見できることがわかった。
- 参考スコア(独自算出の注目度): 21.708391958446274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robots operating in an open world will encounter novel objects with unknown
physical properties, such as mass, friction, or size. These robots will need to
sense these properties through interaction prior to performing downstream tasks
with the objects. We propose a method that autonomously learns tactile
exploration policies by developing a generative world model that is leveraged
to 1) estimate the object's physical parameters using a differentiable Bayesian
filtering algorithm and 2) develop an exploration policy using an
information-gathering model predictive controller. We evaluate our method on
three simulated tasks where the goal is to estimate a desired object property
(mass, height or toppling height) through physical interaction. We find that
our method is able to discover policies that efficiently gather information
about the desired property in an intuitive manner. Finally, we validate our
method on a real robot system for the height estimation task, where our method
is able to successfully learn and execute an information-gathering policy from
scratch.
- Abstract(参考訳): オープンワールドで動作するロボットは、質量、摩擦、大きさなどの未知の物理的性質を持つ新しい物体に遭遇する。
これらのロボットは、オブジェクトと下流タスクを実行する前に、インタラクションを通じてこれらの特性を検知する必要がある。
本稿では,創造的世界モデルを構築し,触覚探索政策を自律的に学習する手法を提案する。
1)微分可能なベイズフィルタアルゴリズムとそれを用いた物体の物理パラメータの推定
2)情報収集モデル予測コントローラを用いた探索ポリシーの開発。
本手法は,物理的相互作用により所望の物体特性(質量,高さ,トッピング高さ)を推定する3つのシミュレーション課題に対して評価する。
提案手法は,要求する属性に関する情報を直感的に収集するポリシを効率的に発見できることがわかった。
最後に,本手法が情報収集方針をスクラッチから学習,実行し得る高さ推定タスクのための実ロボットシステム上での検証を行った。
関連論文リスト
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
オブジェクト中心のロボット操作のための身体学習は、AIの急速に発展し、挑戦的な分野である。
データ駆動機械学習とは異なり、具体化学習は環境との物理的相互作用を通じてロボット学習に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-21T11:32:09Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
我々は、オブジェクトのポーズを変えるために環境を利用する一連のアクションを学習する。
我々のアプローチは、オブジェクトとグリップと環境の間の相互作用を利用してオブジェクトの状態を制御することができる。
拘束されたテーブルトップワークスペースから様々な重量,形状,摩擦特性の箱状物体を選別する手法の評価を行った。
論文 参考訳(メタデータ) (2023-10-26T21:28:23Z) - Planning for Learning Object Properties [117.27898922118946]
我々は、物体特性を象徴的な計画問題として認識するために、ニューラルネットワークを自動的に訓練する問題を定式化する。
トレーニングデータセット作成と学習プロセスを自動化するための戦略を作成するために,計画手法を使用します。
シミュレーションと実環境の両方で実験的な評価を行う。
論文 参考訳(メタデータ) (2023-01-15T09:37:55Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
本稿では,スパース・リワード型ロボット操作作業における効率的な学習を可能にするモデルに基づく能動探索手法を提案する。
我々は,提案アルゴリズムをシミュレーションおよび実ロボットで評価し,スクラッチから本手法を訓練した。
論文 参考訳(メタデータ) (2022-10-23T18:07:51Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
The Hypothesize, Simulate, Act, Update, and Repeat (H-SAUR) is a probabilistic generative framework that generated hypotheses about objects articulate given input observed。
提案手法は,現在最先端のオブジェクト操作フレームワークよりも優れていることを示す。
我々は、学習に基づく視覚モデルから学習前の学習を統合することにより、H-SAURのテスト時間効率をさらに向上する。
論文 参考訳(メタデータ) (2022-10-22T18:39:33Z) - Affordance Learning from Play for Sample-Efficient Policy Learning [30.701546777177555]
遠隔操作型プレイデータから自己監督型ビジュアルアプライアンスモデルを用いて,効率的なポリシー学習とモーションプランニングを実現する。
モデルベースプランニングとモデルフリーの深層強化学習を組み合わせることで、人々が好む同じ対象領域を好むポリシーを学ぶ。
我々の政策はベースラインよりも4倍速くトレーニングし、新しいオブジェクトを一般化する。
論文 参考訳(メタデータ) (2022-03-01T11:00:35Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
モデルに基づく視覚的目標達成のための自己監視手法を提案する。
私たちのアプローチは、オフラインでラベルなしのデータを使って完全に学習します。
このアプローチは,モデルフリーとモデルベース先行手法の両方で大幅に性能が向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T23:59:09Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。