論文の概要: Interacting Diffusion Processes for Event Sequence Forecasting
- arxiv url: http://arxiv.org/abs/2310.17800v2
- Date: Sat, 20 Jul 2024 02:52:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 05:26:51.569900
- Title: Interacting Diffusion Processes for Event Sequence Forecasting
- Title(参考訳): イベント系列予測のための相互作用拡散過程
- Authors: Mai Zeng, Florence Regol, Mark Coates,
- Abstract要約: 拡散生成モデルを組み込んだ新しい手法を提案する。
このモデルはシーケンス・ツー・シーケンスの予測を容易にし、過去のイベント・シーケンスに基づいた複数ステップの予測を可能にする。
提案手法は,TPPの長期予測において,最先端のベースラインよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 20.380620709345898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Temporal Point Processes (TPPs) have emerged as the primary framework for predicting sequences of events that occur at irregular time intervals, but their sequential nature can hamper performance for long-horizon forecasts. To address this, we introduce a novel approach that incorporates a diffusion generative model. The model facilitates sequence-to-sequence prediction, allowing multi-step predictions based on historical event sequences. In contrast to previous approaches, our model directly learns the joint probability distribution of types and inter-arrival times for multiple events. This allows us to fully leverage the high dimensional modeling capability of modern generative models. Our model is composed of two diffusion processes, one for the time intervals and one for the event types. These processes interact through their respective denoising functions, which can take as input intermediate representations from both processes, allowing the model to learn complex interactions. We demonstrate that our proposal outperforms state-of-the-art baselines for long-horizon forecasting of TPP.
- Abstract(参考訳): ニューラル・テンポラル・ポイント・プロセス(TPP)は、不規則な時間間隔で発生する事象のシーケンスを予測する主要なフレームワークとして登場したが、そのシーケンシャルな性質は、長い水平予測のパフォーマンスを妨げうる。
そこで本研究では,拡散生成モデルを組み込んだ新しい手法を提案する。
このモデルはシーケンス・ツー・シーケンスの予測を容易にし、過去のイベント・シーケンスに基づいた複数ステップの予測を可能にする。
従来の手法とは対照的に,本モデルでは,複数事象の連立確率分布と地域間時間を直接学習する。
これにより、現代生成モデルの高次元モデリング能力をフル活用することができる。
我々のモデルは2つの拡散過程で構成されており、1つは時間間隔、もう1つはイベントタイプである。
これらのプロセスはそれぞれの分母関数を介して相互作用し、この関数は両方のプロセスから入力中間表現となり、モデルが複雑な相互作用を学習することができる。
提案手法は,TPPの長期予測において,最先端のベースラインよりも優れていることを示す。
関連論文リスト
- On the Efficient Marginalization of Probabilistic Sequence Models [3.5897534810405403]
この論文は、複雑な確率的クエリに答えるために自己回帰モデルを使うことに焦点を当てている。
我々は,モデルに依存しない逐次モデルにおいて,境界化のための新しい,効率的な近似手法のクラスを開発する。
論文 参考訳(メタデータ) (2024-03-06T19:29:08Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFunモデルは、累積分布関数(CDF)を中心に回転するTPPに対する新しいアプローチを表す
提案手法は従来のTPPモデリングに固有のいくつかの重要な問題に対処する。
コントリビューションには、先駆的なCDFベースのTPPモデルの導入、過去の事象情報を将来の事象予測に組み込む方法論の開発が含まれている。
論文 参考訳(メタデータ) (2024-02-01T07:21:30Z) - Add and Thin: Diffusion for Temporal Point Processes [24.4686728569167]
ADD-THINは、時間点過程(TPP)ネットワークの確率的デノナイジング拡散モデルである。
イベントシーケンス全体で動作し、密度推定において最先端のTPPモデルと一致する。
合成および実世界のデータセットの実験において、我々のモデルは密度推定における最先端のTPPモデルと一致し、予測においてそれらを強く上回る。
論文 参考訳(メタデータ) (2023-11-02T10:42:35Z) - Non-Autoregressive Diffusion-based Temporal Point Processes for
Continuous-Time Long-Term Event Prediction [8.88485011274486]
本研究では,長期イベント予測のための拡散に基づく非自己回帰時間プロセスモデルを提案する。
事象列上で拡散過程を実行するために,対象事象列とユークリッドベクトル空間の間の双方向マップを開発する。
連続時間における長期イベント予測における最先端手法よりも提案モデルの方が優れていることを示す実験を行った。
論文 参考訳(メタデータ) (2023-11-02T06:52:44Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
時間点プロセス(TPP)は、そのようなモデリングの標準的な方法である。
既存のTPPモデルは、イベントの相互作用を明示的にモデル化する代わりに、将来のイベントの条件分布に焦点を当てており、イベント予測の課題を示唆している。
本稿では,ニューラル推論(NRI)を利用して,観測データから動的パターンを同時に学習しながら,相互作用を推論するグラフを学習する手法を提案する。
論文 参考訳(メタデータ) (2023-09-06T09:47:03Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
複合イベント認識(CER)システムは、イベントのリアルタイムストリーム上のパターンを"即時"検出する能力によって、過去20年間に人気が高まっている。
このような現象が実際にCERエンジンによって検出される前に、パターンがいつ発生するかを予測する方法が不足している。
複雑なイベント予測の問題に対処しようとする形式的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-01T09:52:31Z) - Interval-censored Hawkes processes [82.87738318505582]
本研究では,Hawkesプロセスのパラメータを間隔制限設定で推定するモデルを提案する。
我々は、ホークス族に対する非均質近似が、間隔検閲された設定において牽引可能な可能性を認めている方法を示す。
論文 参考訳(メタデータ) (2021-04-16T07:29:04Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。