From Values to Opinions: Predicting Human Behaviors and Stances Using
Value-Injected Large Language Models
- URL: http://arxiv.org/abs/2310.17857v1
- Date: Fri, 27 Oct 2023 02:18:10 GMT
- Title: From Values to Opinions: Predicting Human Behaviors and Stances Using
Value-Injected Large Language Models
- Authors: Dongjun Kang, Joonsuk Park, Yohan Jo, JinYeong Bak
- Abstract summary: We propose to use value-injected large language models (LLM) to predict opinions and behaviors.
We conduct a series of experiments on four tasks to test the effectiveness of VIM.
Results suggest that opinions and behaviors can be better predicted using value-injected LLMs than the baseline approaches.
- Score: 10.520548925719565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Being able to predict people's opinions on issues and behaviors in realistic
scenarios can be helpful in various domains, such as politics and marketing.
However, conducting large-scale surveys like the European Social Survey to
solicit people's opinions on individual issues can incur prohibitive costs.
Leveraging prior research showing influence of core human values on individual
decisions and actions, we propose to use value-injected large language models
(LLM) to predict opinions and behaviors. To this end, we present Value
Injection Method (VIM), a collection of two methods -- argument generation and
question answering -- designed to inject targeted value distributions into LLMs
via fine-tuning. We then conduct a series of experiments on four tasks to test
the effectiveness of VIM and the possibility of using value-injected LLMs to
predict opinions and behaviors of people. We find that LLMs value-injected with
variations of VIM substantially outperform the baselines. Also, the results
suggest that opinions and behaviors can be better predicted using
value-injected LLMs than the baseline approaches.
Related papers
- Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes.
We find that the majority of disagreements are in opposition with standard reward modeling approaches.
We develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.
arXiv Detail & Related papers (2024-10-18T17:32:22Z) - Bayesian Statistical Modeling with Predictors from LLMs [5.5711773076846365]
State of the art large language models (LLMs) have shown impressive performance on a variety of benchmark tasks.
This raises questions about the human-likeness of LLM-derived information.
arXiv Detail & Related papers (2024-06-13T11:33:30Z) - Decision-Making Behavior Evaluation Framework for LLMs under Uncertain Context [5.361970694197912]
This paper proposes a framework, grounded in behavioral economics, to evaluate the decision-making behaviors of large language models (LLMs)
We estimate the degree of risk preference, probability weighting, and loss aversion in a context-free setting for three commercial LLMs: ChatGPT-4.0-Turbo, Claude-3-Opus, and Gemini-1.0-pro.
Our results reveal that LLMs generally exhibit patterns similar to humans, such as risk aversion and loss aversion, with a tendency to overweight small probabilities.
arXiv Detail & Related papers (2024-06-10T02:14:19Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
Learning from preference labels plays a crucial role in fine-tuning large language models.
There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning.
arXiv Detail & Related papers (2024-04-22T17:20:18Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) can estimate causal effects under interventions on different parts of a system.
We conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
Large language models (LLMs) have opened up exciting possibilities for simulating human behavior and cognitive processes.
However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain.
This paper presents a novel approach based on Shapley values to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output.
arXiv Detail & Related papers (2024-03-29T22:49:43Z) - Using LLMs to Model the Beliefs and Preferences of Targeted Populations [4.0849074543032105]
We consider the problem of aligning a large language model (LLM) to model the preferences of a human population.
Modeling the beliefs, preferences, and behaviors of a specific population can be useful for a variety of different applications.
arXiv Detail & Related papers (2024-03-29T15:58:46Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
Large-Language-Models (LLMs) are deployed in a wide range of applications, and their response has an increasing social impact.
We show that value bias is strong in LLMs across different categories, similar to the results found in human studies.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - The Challenge of Using LLMs to Simulate Human Behavior: A Causal
Inference Perspective [0.32634122554913997]
Large Language Models (LLMs) have demonstrated impressive potential to simulate human behavior.
We show that variations in the treatment included in the prompt can cause variations in unspecified confounding factors.
We propose a theoretical framework suggesting this endogeneity issue generalizes to other contexts.
arXiv Detail & Related papers (2023-12-24T16:32:35Z) - On Diversified Preferences of Large Language Model Alignment [51.26149027399505]
This paper presents the first quantitative analysis of the experimental scaling law for reward models with varying sizes.
Our analysis reveals that the impact of diversified human preferences depends on both model size and data size.
Larger models with sufficient capacity mitigate the negative effects of diverse preferences, while smaller models struggle to accommodate them.
arXiv Detail & Related papers (2023-12-12T16:17:15Z) - Heterogeneous Value Alignment Evaluation for Large Language Models [91.96728871418]
Large Language Models (LLMs) have made it crucial to align their values with those of humans.
We propose a Heterogeneous Value Alignment Evaluation (HVAE) system to assess the success of aligning LLMs with heterogeneous values.
arXiv Detail & Related papers (2023-05-26T02:34:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.