StenUNet: Automatic Stenosis Detection from X-ray Coronary Angiography
- URL: http://arxiv.org/abs/2310.14961v1
- Date: Mon, 23 Oct 2023 14:04:18 GMT
- Title: StenUNet: Automatic Stenosis Detection from X-ray Coronary Angiography
- Authors: Hui Lin, Tom Liu, Aggelos Katsaggelos, Adrienne Kline
- Abstract summary: The severity of coronary artery disease (CAD) is quantified by the location, degree of narrowing (stenosis) and number of arteries involved.
The MICCAI grand challenge: Automatic Region-based Coronary Artery Disease diagnostics using the X-ray angiography imagEs (ARCADE) curated a dataset with stenosis annotations.
We propose the architecture and algorithm StenUNet to accurately detect stenosis from X-ray Coronary Angiography.
- Score: 5.430434855741553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coronary angiography continues to serve as the primary method for diagnosing
coronary artery disease (CAD), which is the leading global cause of mortality.
The severity of CAD is quantified by the location, degree of narrowing
(stenosis), and number of arteries involved. In current practice, this
quantification is performed manually using visual inspection and thus suffers
from poor inter- and intra-rater reliability. The MICCAI grand challenge:
Automatic Region-based Coronary Artery Disease diagnostics using the X-ray
angiography imagEs (ARCADE) curated a dataset with stenosis annotations, with
the goal of creating an automated stenosis detection algorithm. Using a
combination of machine learning and other computer vision techniques, we
propose the architecture and algorithm StenUNet to accurately detect stenosis
from X-ray Coronary Angiography. Our submission to the ARCADE challenge placed
3rd among all teams. We achieved an F1 score of 0.5348 on the test set, 0.0005
lower than the 2nd place.
Related papers
- SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - Multivessel Coronary Artery Segmentation and Stenosis Localisation using
Ensemble Learning [3.656984996633334]
This study introduces an end-to-end machine learning solution developed as part of our solution for the MICCAI 2023 Automatic Region-based Coronary Artery Disease diagnostics.
It aims to benchmark solutions for multivessel coronary artery segmentation and potential stenotic lesion localisation from X-ray coronary angiograms.
Our solution achieved a mean F1 score of $37.69%$ for coronary artery segmentation, and $39.41%$ for stenosis localisation, positioning our team in the 5th position on both leaderboards.
arXiv Detail & Related papers (2023-10-27T08:03:12Z) - YOLO-Angio: An Algorithm for Coronary Anatomy Segmentation [13.603729336413833]
We present our solution to the Automatic Region-based Coronary Artery Disease diagnostics using X-ray angiography images (ARCADE) challenge held at MICCAI 2023.
Our three-stage approach combines preprocessing and feature selection by classical computer vision to enhance vessel contrast.
A final segmentation is based on a logic-based approach to reconstruct the coronary tree in a graph-based sorting method.
arXiv Detail & Related papers (2023-10-24T15:02:02Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Automated Detection of Coronary Artery Stenosis in X-ray Angiography
using Deep Neural Networks [0.0]
We propose a two-step deep-learning framework to partially automate the detection of stenosis from X-ray coronary angiography images.
We achieved a 0.97 accuracy on the task of classifying the Left/Right Coronary Artery angle view and 0.68/0.73 recall on the determination of the regions of interest, for LCA and RCA, respectively.
arXiv Detail & Related papers (2021-03-04T11:45:54Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease [4.233200689119682]
The evaluation of obstructions (stenosis) in coronary arteries is currently done by a physician's visual assessment of coronary angiography video sequences.
We report an automated analysis pipeline based on deep learning to rapidly and objectively assess coronary angiograms.
We combined powerful deep learning approaches such as ResNet and U-Net with traditional image processing and geometrical analysis.
arXiv Detail & Related papers (2021-01-29T10:23:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.