Adversarial Anomaly Detection using Gaussian Priors and Nonlinear
Anomaly Scores
- URL: http://arxiv.org/abs/2310.18091v1
- Date: Fri, 27 Oct 2023 12:24:08 GMT
- Title: Adversarial Anomaly Detection using Gaussian Priors and Nonlinear
Anomaly Scores
- Authors: Fiete L\"uer, Tobias Weber, Maxim Dolgich, Christian B\"ohm
- Abstract summary: Anomaly detection in imbalanced datasets is a frequent and crucial problem, especially in the medical domain.
By combining the generative stability of a $beta$-variational autoencoder (VAE) with the discriminative strengths of generative adversarial networks (GANs), we propose a novel model, $beta$-VAEGAN.
We investigate methods for composing anomaly scores based on the discriminative and reconstructive capabilities of our model.
- Score: 0.21847754147782888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in imbalanced datasets is a frequent and crucial problem,
especially in the medical domain where retrieving and labeling irregularities
is often expensive. By combining the generative stability of a
$\beta$-variational autoencoder (VAE) with the discriminative strengths of
generative adversarial networks (GANs), we propose a novel model,
$\beta$-VAEGAN. We investigate methods for composing anomaly scores based on
the discriminative and reconstructive capabilities of our model. Existing work
focuses on linear combinations of these components to determine if data is
anomalous. We advance existing work by training a kernelized support vector
machine (SVM) on the respective error components to also consider nonlinear
relationships. This improves anomaly detection performance, while allowing
faster optimization. Lastly, we use the deviations from the Gaussian prior of
$\beta$-VAEGAN to form a novel anomaly score component. In comparison to
state-of-the-art work, we improve the $F_1$ score during anomaly detection from
0.85 to 0.92 on the widely used MITBIH Arrhythmia Database.
Related papers
- FUN-AD: Fully Unsupervised Learning for Anomaly Detection with Noisy Training Data [1.0650780147044159]
We propose a novel learning-based approach for fully unsupervised anomaly detection with unlabeled and potentially contaminated training data.
Our method is motivated by two observations, that i) the pairwise feature distances between the normal samples are on average likely to be smaller than those between the anomaly samples or heterogeneous samples and ii) pairs of features mutually closest to each other are likely to be homogeneous pairs.
Building on the first observation that nearest-neighbor distances can distinguish between confident normal samples and anomalies, we propose a pseudo-labeling strategy using an iteratively reconstructed memory bank.
arXiv Detail & Related papers (2024-11-25T05:51:38Z) - RoSAS: Deep Semi-Supervised Anomaly Detection with
Contamination-Resilient Continuous Supervision [21.393509817509464]
This paper proposes a novel semi-supervised anomaly detection method, which devises textitcontamination-resilient continuous supervisory signals
Our approach significantly outperforms state-of-the-art competitors by 20%-30% in AUC-PR.
arXiv Detail & Related papers (2023-07-25T04:04:49Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
This study presents an adversarial method for anomaly detection in real-world applications, leveraging the power of generative adversarial neural networks (GANs)
Previous methods suffer from the high variance between class-wise accuracy which leads to not being applicable for all types of anomalies.
The proposed method named RCALAD tries to solve this problem by introducing a novel discriminator to the structure, which results in a more efficient training process.
arXiv Detail & Related papers (2023-04-16T13:05:39Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - FeDXL: Provable Federated Learning for Deep X-Risk Optimization [105.17383135458897]
We tackle a novel federated learning (FL) problem for optimizing a family of X-risks, to which no existing algorithms are applicable.
The challenges for designing an FL algorithm for X-risks lie in the non-decomability of the objective over multiple machines and the interdependency between different machines.
arXiv Detail & Related papers (2022-10-26T00:23:36Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
Semi-supervised anomaly detection aims to detect anomalies from normal samples using a model that is trained on normal data.
We propose a method, DASVDD, that jointly learns the parameters of an autoencoder while minimizing the volume of an enclosing hyper-sphere on its latent representation.
arXiv Detail & Related papers (2021-06-09T21:57:41Z) - Discriminative-Generative Dual Memory Video Anomaly Detection [81.09977516403411]
Recently, people tried to use a few anomalies for video anomaly detection (VAD) instead of only normal data during the training process.
We propose a DiscRiminative-gEnerative duAl Memory (DREAM) anomaly detection model to take advantage of a few anomalies and solve data imbalance.
arXiv Detail & Related papers (2021-04-29T15:49:01Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection [5.457279006229213]
We propose a new Regularized Cycle Consistent Generative Adversarial Network (RCGAN) in which deep neural networks are adversarially trained to better recognize anomalous samples.
Experimental results on both real-world and synthetic data show that our model leads to significant and consistent improvements on previous anomaly detection benchmarks.
arXiv Detail & Related papers (2020-01-18T03:35:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.