Photo-dynamics of quantum emitters in aluminum nitride
- URL: http://arxiv.org/abs/2310.18190v1
- Date: Fri, 27 Oct 2023 15:02:53 GMT
- Title: Photo-dynamics of quantum emitters in aluminum nitride
- Authors: Yanzhao Guo, John P. Hadden, Rachel N. Clark, Samuel G. Bishop, and
Anthony J. Bennett
- Abstract summary: Quantum emitters in aluminum nitride contain as many as 6 internal energy levels with distinct laser power-dependent behaviors.
Power-dependent shelving and de-shelving processes, such as optically induced ionization and recombination are considered.
State population dynamics simulations qualitatively explain the temporal behaviours of the quantum emitters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aluminum nitride is a technologically important wide bandgap semiconductor
which has been shown to host bright quantum emitters. In this paper, we probe
the photodynamics of quantum emitters in aluminum nitride using photon emission
correlations and time-resolved spectroscopy. We identify that each emitter
contains as many as 6 internal energy levels with distinct laser
power-dependent behaviors. Power-dependent shelving and de-shelving processes,
such as optically induced ionization and recombination are considered,
indicating complex optical dynamics associated with the spontaneous and
optically pumped transitions. State population dynamics simulations
qualitatively explain the temporal behaviours of the quantum emitters,
revealing that those with pump-dependent de-shelving processes can saturate at
significantly higher intensities, resulting in bright room-temperature quantum
light emission.
Related papers
- Dynamic resonance fluorescence in solid-state cavity quantum
electrodynamics [4.080301105379762]
We report the direct observation and systematic investigations of dynamic resonance fluorescence spectra beyond the Mollow-triplet.
Our work facilitates the generation of a variety of exotic quantum states of light with dynamic driving of two-level systems.
arXiv Detail & Related papers (2023-05-30T06:19:17Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Probing the Optical Dynamics of Quantum Emitters in Hexagonal Boron
Nitride [0.0]
Hexagonal boron nitride is a van der Waals material that hosts visible-wavelength quantum emitters at room temperature.
Here, we probe the optical dynamics of quantum emitters in hexagonal boron nitride using photon emission correlation spectroscopy.
arXiv Detail & Related papers (2022-01-21T20:12:53Z) - Self-Ordering of Individual Photons in Waveguide QED and Rydberg-Atom
Arrays [0.548253258922555]
We study the propagation of light through an optical waveguide that is chirally coupled to three-level quantum emitters.
We show that the additional laser-coupling to a third emitter state not only permits to control the properties of the bound state but can even eliminate it entirely.
We demonstrate this emerging photon-photon repulsion by analysing the quantum dynamics of multiple photons in large emitter arrays.
arXiv Detail & Related papers (2021-10-25T13:55:10Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Internal Photo Effect from a Single Quantum Emitter [0.5172201569251683]
Internal photo-effect that emits electrons from the dot by an intra-band excitation is studied.
We find a linear dependence of the optically generated emission rate on the intensity excitation.
The results also quantify an important, but mostly neglected, mechanism that may fundamentally limit the coherence times in solid-state quantum optical devices.
arXiv Detail & Related papers (2020-10-21T12:13:07Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Control of single quantum emitters in bio-inspired aperiodic
nano-photonic devices [0.0]
Enhancing light-matter interactions on a chip is of paramount importance to study nano- and quantum optics effects.
We report on the demonstration of enhanced light-matter interaction and Purcell effects on a chip, based on bio-inspired aperiodic devices fabricated in silicon nitride and gallium arsenide.
arXiv Detail & Related papers (2020-01-18T20:40:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.