Dynamic Neural Style Transfer for Artistic Image Generation using VGG19
- URL: http://arxiv.org/abs/2501.09420v1
- Date: Thu, 16 Jan 2025 09:47:18 GMT
- Title: Dynamic Neural Style Transfer for Artistic Image Generation using VGG19
- Authors: Kapil Kashyap, Mehak Garg, Sean Fargose, Sindhu Nair,
- Abstract summary: We propose a neural style transfer system that can add various artistic styles to a desired image.
The system uses the VGG19 model for feature extraction, ensuring high-quality, flexible stylization without compromising content integrity.
- Score: 0.0
- License:
- Abstract: Throughout history, humans have created remarkable works of art, but artificial intelligence has only recently started to make strides in generating visually compelling art. Breakthroughs in the past few years have focused on using convolutional neural networks (CNNs) to separate and manipulate the content and style of images, applying texture synthesis techniques. Nevertheless, a number of current techniques continue to encounter obstacles, including lengthy processing times, restricted choices of style images, and the inability to modify the weight ratio of styles. We proposed a neural style transfer system that can add various artistic styles to a desired image to address these constraints allowing flexible adjustments to style weight ratios and reducing processing time. The system uses the VGG19 model for feature extraction, ensuring high-quality, flexible stylization without compromising content integrity.
Related papers
- ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
This paper presents an inversion-free portrait stylization framework based on diffusion models that accomplishes content and style feature fusion in merely four sampling steps.
We propose a feature merging strategy to amalgamate redundant features in Consistency Features, thereby reducing the computational load of attention control.
arXiv Detail & Related papers (2024-08-10T08:53:41Z) - MuseumMaker: Continual Style Customization without Catastrophic Forgetting [50.12727620780213]
We propose MuseumMaker, a method that enables the synthesis of images by following a set of customized styles in a never-end manner.
When facing with a new customization style, we develop a style distillation loss module to extract and learn the styles of the training data for new image generation.
It can minimize the learning biases caused by content of new training images, and address the catastrophic overfitting issue induced by few-shot images.
arXiv Detail & Related papers (2024-04-25T13:51:38Z) - ArtNeRF: A Stylized Neural Field for 3D-Aware Cartoonized Face Synthesis [11.463969116010183]
ArtNeRF is a novel face stylization framework derived from 3D-aware GAN.
We propose an expressive generator to synthesize stylized faces and a triple-branch discriminator module to improve style consistency.
Experiments demonstrate that ArtNeRF is versatile in generating high-quality 3D-aware cartoon faces with arbitrary styles.
arXiv Detail & Related papers (2024-04-21T16:45:35Z) - Rethink Arbitrary Style Transfer with Transformer and Contrastive Learning [11.900404048019594]
In this paper, we introduce an innovative technique to improve the quality of stylized images.
Firstly, we propose Style Consistency Instance Normalization (SCIN), a method to refine the alignment between content and style features.
In addition, we have developed an Instance-based Contrastive Learning (ICL) approach designed to understand relationships among various styles.
arXiv Detail & Related papers (2024-04-21T08:52:22Z) - Generative AI Model for Artistic Style Transfer Using Convolutional
Neural Networks [0.0]
Artistic style transfer involves fusing the content of one image with the artistic style of another to create unique visual compositions.
This paper presents a comprehensive overview of a novel technique for style transfer using Convolutional Neural Networks (CNNs)
arXiv Detail & Related papers (2023-10-27T16:21:17Z) - DIFF-NST: Diffusion Interleaving For deFormable Neural Style Transfer [27.39248034592382]
We propose using a new class of models to perform style transfer while enabling deformable style transfer.
We show how leveraging the priors of these models can expose new artistic controls at inference time.
arXiv Detail & Related papers (2023-07-09T12:13:43Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST) is a novel style representation learning and transfer framework.
We present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature.
Our framework consists of three key components, i.e., a parallel contrastive learning scheme for style representation and style transfer, a domain enhancement module for effective learning of style distribution, and a generative network for style transfer.
arXiv Detail & Related papers (2023-03-09T04:35:00Z) - QuantArt: Quantizing Image Style Transfer Towards High Visual Fidelity [94.5479418998225]
We propose a new style transfer framework called QuantArt for high visual-fidelity stylization.
Our framework achieves significantly higher visual fidelity compared with the existing style transfer methods.
arXiv Detail & Related papers (2022-12-20T17:09:53Z) - StyleTime: Style Transfer for Synthetic Time Series Generation [10.457423272041332]
We introduce the concept of stylized features for time series, which is directly related to the time series realism properties.
We propose a novel stylization algorithm, called StyleTime, that uses explicit feature extraction techniques to combine the underlying content (trend) of one time series with the style (distributional properties) of another.
arXiv Detail & Related papers (2022-09-22T20:42:19Z) - Fast Training of Neural Lumigraph Representations using Meta Learning [109.92233234681319]
We develop a new neural rendering approach with the goal of quickly learning a high-quality representation which can also be rendered in real-time.
Our approach, MetaNLR++, accomplishes this by using a unique combination of a neural shape representation and 2D CNN-based image feature extraction, aggregation, and re-projection.
We show that MetaNLR++ achieves similar or better photorealistic novel view synthesis results in a fraction of the time that competing methods require.
arXiv Detail & Related papers (2021-06-28T18:55:50Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
Controllable person image generation aims to produce realistic human images with desirable attributes.
We introduce a novel Spatially-Adaptive Warped Normalization (SAWN), which integrates a learned flow-field to warp modulation parameters.
We propose a novel self-training part replacement strategy to refine the pretrained model for the texture-transfer task.
arXiv Detail & Related papers (2021-05-31T07:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.