Unlocking Structured Thinking in Language Models with Cognitive Prompting
- URL: http://arxiv.org/abs/2410.02953v2
- Date: Tue, 15 Oct 2024 15:08:32 GMT
- Title: Unlocking Structured Thinking in Language Models with Cognitive Prompting
- Authors: Oliver Kramer, Jill Baumann,
- Abstract summary: We propose cognitive prompting as a novel approach to guide problem-solving in large language models.
We evaluate the effectiveness of cognitive prompting on Meta's LLaMA models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose cognitive prompting as a novel approach to guide problem-solving in large language models (LLMs) through structured, human-like cognitive operations such as goal clarification, decomposition, filtering, abstraction, and pattern recognition. By employing systematic, step-by-step reasoning, cognitive prompting enables LLMs to efficiently tackle complex, multi-step tasks. We evaluate the effectiveness of cognitive prompting on Meta's LLaMA models, comparing performance on arithmetic reasoning tasks using the GSM8K dataset and on commonsense reasoning benchmarks. Our analysis includes comparisons between models without cognitive prompting, models with a static sequence of cognitive operations, and models using reflective cognitive prompting, where the LLM dynamically self-selects the sequence of cognitive operations. The results show that cognitive prompting, particularly when dynamically adapted, significantly improves the performance of larger models, such as LLaMA3.1 70B, and enhances their ability to handle multi-step reasoning tasks. This approach also improves interpretability and flexibility, highlighting cognitive prompting as a promising strategy for general-purpose AI reasoning.
Related papers
- A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.
With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.
We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Cognitive Prompts Using Guilford's Structure of Intellect Model [0.0]
Large language models (LLMs) demonstrate strong language generation capabilities but often struggle with structured reasoning.
This paper presents a novel cognitive prompting approach for enforcing SOI-inspired reasoning for improving clarity, coherence, and adaptability in model responses.
arXiv Detail & Related papers (2025-03-27T23:06:30Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
We propose a novel reasoning framework called Forest-of-Thought (FoT)
FoT integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems.
FoT employs sparse activation strategies to select the most relevant reasoning paths, improving both efficiency and accuracy.
arXiv Detail & Related papers (2024-12-12T09:01:18Z) - LatentQA: Teaching LLMs to Decode Activations Into Natural Language [72.87064562349742]
We introduce LatentQA, the task of answering open-ended questions about model activations in natural language.
We propose Latent Interpretation Tuning (LIT), which finetunes a decoder LLM on a dataset of activations and associated question-answer pairs.
Our decoder also specifies a differentiable loss that we use to control models, such as debiasing models on stereotyped sentences and controlling the sentiment of generations.
arXiv Detail & Related papers (2024-12-11T18:59:33Z) - Disentangling Memory and Reasoning Ability in Large Language Models [97.26827060106581]
We propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions.
Our experiment results show that this decomposition improves model performance and enhances the interpretability of the inference process.
arXiv Detail & Related papers (2024-11-20T17:55:38Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [35.43513487137371]
Large Language Models (LLMs) have achieved substantial progress in artificial intelligence, particularly in reasoning tasks.
We propose the Deductive and InDuctive(DID) method, which enhances LLM reasoning by dynamically integrating both deductive and inductive reasoning.
Our findings suggest that DID provides a more robust and cognitively aligned framework for reasoning in LLMs.
arXiv Detail & Related papers (2024-10-03T18:30:47Z) - Iteration of Thought: Leveraging Inner Dialogue for Autonomous Large Language Model Reasoning [0.0]
Iterative human engagement is a common and effective means of leveraging the advanced language processing power of large language models (LLMs)
We propose the Iteration of Thought (IoT) framework for enhancing LLM responses by generating "thought"-provoking prompts.
Unlike static or semi-static approaches, IoT adapts its reasoning path dynamically, based on evolving context.
arXiv Detail & Related papers (2024-09-19T09:44:17Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
Large Language Models (LLMs) have demonstrated their capabilities across various tasks.
This paper exploits the reasoning and generative capabilities of the LLMs to predict human behavior in two sequential decision-making tasks.
We compare the performance of LLMs with a cognitive instance-based learning model, which imitates human experiential decision-making.
arXiv Detail & Related papers (2024-07-12T14:13:06Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Verbalized Probabilistic Graphical Modeling with Large Language Models [8.961720262676195]
This work introduces a novel Bayesian prompting approach that facilitates training-free Bayesian inference with large language models.
Our results indicate that the model effectively enhances confidence elicitation and text generation quality, demonstrating its potential to improve AI language understanding systems.
arXiv Detail & Related papers (2024-06-08T16:35:31Z) - Rethinking ChatGPT's Success: Usability and Cognitive Behaviors Enabled by Auto-regressive LLMs' Prompting [5.344199202349884]
We analyze the structure of modalities within both two types of Large Language Models and six task-specific channels during deployment.
We examine the stimulation of diverse cognitive behaviors in LLMs through the adoption of free-form text and verbal contexts.
arXiv Detail & Related papers (2024-05-17T00:19:41Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Active Prompting with Chain-of-Thought for Large Language Models [26.5029080638055]
This paper proposes a new method, Active-Prompt, to adapt large language models to different tasks.
By borrowing ideas from the related problem of uncertainty-based active learning, we introduce several metrics to characterize the uncertainty.
Experimental results demonstrate the superiority of our proposed method, achieving state-of-the-art on eight complex reasoning tasks.
arXiv Detail & Related papers (2023-02-23T18:58:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.