論文の概要: Large-scale Foundation Models and Generative AI for BigData Neuroscience
- arxiv url: http://arxiv.org/abs/2310.18377v1
- Date: Fri, 27 Oct 2023 00:44:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 18:59:40.725208
- Title: Large-scale Foundation Models and Generative AI for BigData Neuroscience
- Title(参考訳): ビッグデータ神経科学のための大規模基礎モデルと生成AI
- Authors: Ran Wang and Zhe Sage Chen
- Abstract要約: 機械学習の最近の進歩は、コンピュータゲーム、画像、自然言語理解において画期的なブレークスルーをもたらした。
ファンデーションモデルと大規模言語モデル(LLM)は最近、BigDataのおかげで人間のようなインテリジェンスを達成した。
自己教師あり学習(SSL)と伝達学習(Transfer Learning)の助けを借りて、これらのモデルは神経科学研究の風景を形作る可能性がある。
- 参考スコア(独自算出の注目度): 3.4825443450916196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in machine learning have made revolutionary breakthroughs in
computer games, image and natural language understanding, and scientific
discovery. Foundation models and large-scale language models (LLMs) have
recently achieved human-like intelligence thanks to BigData. With the help of
self-supervised learning (SSL) and transfer learning, these models may
potentially reshape the landscapes of neuroscience research and make a
significant impact on the future. Here we present a mini-review on recent
advances in foundation models and generative AI models as well as their
applications in neuroscience, including natural language and speech, semantic
memory, brain-machine interfaces (BMIs), and data augmentation. We argue that
this paradigm-shift framework will open new avenues for many neuroscience
research directions and discuss the accompanying challenges and opportunities.
- Abstract(参考訳): 機械学習の最近の進歩は、コンピュータゲーム、画像と自然言語理解、科学的発見に革命的なブレークスルーをもたらした。
ファンデーションモデルと大規模言語モデル(LLM)は最近、BigDataのおかげで人間のようなインテリジェンスを達成した。
自己教師付き学習(SSL)と伝達学習の助けを借りて、これらのモデルは神経科学研究の景観を再構築し、未来に大きな影響を与える可能性がある。
本稿では,基礎モデルや生成型aiモデルの最近の進歩と,自然言語や音声,意味記憶,bmi(brain-machine interface),データ拡張など,神経科学への応用に関するミニレビューを行う。
このパラダイムシフトフレームワークは、多くの神経科学研究の方向性に新しい道を開き、それに伴う課題と機会について議論する。
関連論文リスト
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Neuronal Auditory Machine Intelligence (NEURO-AMI) In Perspective [0.0]
ニューラル・オーディトリー・マシン・インテリジェンス(Neuro-AMI)と競合するバイオインスパイアされた連続学習型ニューラル・ニューラル・ニューラル・ニューラル・インテリジェンス(Neuro-AMI)の概要を述べる。
本稿では,ニューラル・オーディトリー・マシン・インテリジェンス(Neuro-AMI)と競合するバイオインスパイアされた連続学習型ニューラル・ラーニング・ツールについて概説する。
論文 参考訳(メタデータ) (2023-10-14T13:17:58Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
大規模言語モデルがどのように科学的合成、推論、説明を行うことができるかを示す。
我々は,この「知識」を科学的文献から合成することで,大きな言語モデルによって強化できることを示す。
このアプローチは、大きな言語モデルが機械学習システムの予測を説明することができるというさらなる利点を持っている。
論文 参考訳(メタデータ) (2023-10-12T02:17:59Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Looking deeper into interpretable deep learning in neuroimaging: a
comprehensive survey [20.373311465258393]
本稿では、ニューロイメージング領域における解釈可能なディープラーニングモデルについて包括的にレビューする。
近年の神経画像研究は、モデル解釈可能性を利用して、モデル予測に最も関係のある解剖学的および機能的脳変化を捉える方法について論じている。
論文 参考訳(メタデータ) (2023-07-14T04:50:04Z) - Meta-Learning in Spiking Neural Networks with Reward-Modulated STDP [2.179313476241343]
本研究では,海馬と前頭前皮質にインスパイアされた生物工学的メタラーニングモデルを提案する。
我々の新しいモデルはスパイクベースのニューロモーフィックデバイスに容易に適用でき、ニューロモーフィックハードウェアにおける高速な学習を可能にする。
論文 参考訳(メタデータ) (2023-06-07T13:08:46Z) - Large AI Models in Health Informatics: Applications, Challenges, and the
Future [31.66920436409032]
大規模なAIモデル、あるいは基礎モデル(ファウンデーションモデル)は、パラメータワイドとデータワイドの両方で大規模に出現するモデルである。
ChatGPTは、大きなAIモデルが持つ影響に対する人々の想像力を押し付けました。
健康情報学において、大規模AIモデルの出現は方法論の設計に新たなパラダイムをもたらした。
論文 参考訳(メタデータ) (2023-03-21T03:28:33Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
スパイキングニューラルネットワークアルゴリズムは、計算と電力要求の一部を利用して高度な人工知能を実装することを約束する。
本稿では,スパイクに基づくニューロモルフィック技術の理論的研究について解説し,ハードウェアプロセッサ,ソフトウェアプラットフォーム,ニューロモルフィックセンシングデバイスの現状について概説する。
プログレクションパスは、現在の機械学習スペシャリストがスキルセットを更新し、現在の世代のディープニューラルネットワークからSNNへの分類または予測モデルを作成するために舗装されている。
論文 参考訳(メタデータ) (2020-07-10T20:54:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。