論文の概要: From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks
- arxiv url: http://arxiv.org/abs/2310.18382v1
- Date: Fri, 27 Oct 2023 02:58:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 19:00:51.610386
- Title: From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks
- Title(参考訳): ジェネレーティブAIからジェネレーティブなモノのインターネット:基礎、フレームワーク、展望
- Authors: Jinbo Wen, Jiangtian Nie, Jiawen Kang, Dusit Niyato, Hongyang Du, Yang
Zhang, Mohsen Guizani
- Abstract要約: 生成人工知能(GAI)は、現実的なデータを生成し、高度な意思決定を促進する能力を持っている。
GAIを現代のモノのインターネット(IoT)に統合することによって、ジェネレーティブ・インターネット・オブ・モノ(GIoT)が登場し、社会の様々な側面に革命をもたらす大きな可能性を秘めている。
- 参考スコア(独自算出の注目度): 82.964958051535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Artificial Intelligence (GAI) possesses the capabilities of
generating realistic data and facilitating advanced decision-making. By
integrating GAI into modern Internet of Things (IoT), Generative Internet of
Things (GIoT) is emerging and holds immense potential to revolutionize various
aspects of society, enabling more efficient and intelligent IoT applications,
such as smart surveillance and voice assistants. In this article, we present
the concept of GIoT and conduct an exploration of its potential prospects.
Specifically, we first overview four GAI techniques and investigate promising
GIoT applications. Then, we elaborate on the main challenges in enabling GIoT
and propose a general GAI-based secure incentive mechanism framework to address
them, in which we adopt Generative Diffusion Models (GDMs) for incentive
mechanism designs and apply blockchain technologies for secure GIoT management.
Moreover, we conduct a case study on modern Internet of Vehicle traffic
monitoring, which utilizes GDMs to generate effective contracts for
incentivizing users to contribute sensing data with high quality. Finally, we
suggest several open directions worth investigating for the future popularity
of GIoT.
- Abstract(参考訳): 生成人工知能(GAI)は、現実的なデータを生成し、高度な意思決定を促進する能力を持っている。
GAIを現代的なモノのインターネット(IoT)に統合することによって、ジェネレーティブ・インターネット・オブ・モノ(GIoT)が登場し、社会のさまざまな側面に革命をもたらす大きな可能性を秘めており、スマート監視や音声アシスタントといったより効率的でインテリジェントなIoTアプリケーションを可能にしている。
本稿では,GIoTの概念を述べるとともに,その可能性を探究する。
具体的には、まず4つのgai技術を概説し、giotアプリケーションについて検討する。
次に,giotを実現する上での課題を詳述するとともに,gdm(generative diffusion model)をインセンティブ機構設計に採用し,セキュアなgiot管理にブロックチェーン技術を適用する,汎用的なgaiベースのセキュアインセンティブ機構フレームワークを提案する。
さらに,gdmsを利用してユーザのセンシングデータを高品質で提供するためのインセンティブを効果的に生み出す,最新の車両交通監視のインターネットに関する事例研究を行う。
最後に、giotの将来的な人気について調査する価値のあるいくつかのオープンな方向を提案する。
関連論文リスト
- GenAI-powered Multi-Agent Paradigm for Smart Urban Mobility: Opportunities and Challenges for Integrating Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) with Intelligent Transportation Systems [10.310791311301962]
本稿では,大規模言語モデル (LLM) と新生検索・拡張生成技術 (RAG) の変換可能性について検討する。
本稿では,スマートモビリティサービスをインテリジェントかつ対話的に提供可能なマルチエージェントシステムの開発を目的とした概念的フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T16:14:42Z) - Applications of Generative AI (GAI) for Mobile and Wireless Networking: A Survey [11.701278783012171]
ジェネレーティブAI(GAI)は強力なAIパラダイムとして登場した。
本研究はモバイルおよび無線ネットワークにおけるGAIの役割に関するチュートリアルである。
論文 参考訳(メタデータ) (2024-05-30T13:06:40Z) - Generative AI for the Optimization of Next-Generation Wireless Networks: Basics, State-of-the-Art, and Open Challenges [11.707122626823248]
生成AI(GAI)はその独特な強みのために強力なツールとして出現する。
GAIは現実世界のネットワークデータから学習し、その複雑さを捉えている。
本稿では、xG無線ネットワークにおいて、GAIベースのモデルが最適化の機会を解放する方法を調査する。
論文 参考訳(メタデータ) (2024-05-22T14:56:25Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。