Can Large Language Models Be Trusted as Black-Box Evolutionary Optimizers for Combinatorial Problems?
- URL: http://arxiv.org/abs/2501.15081v1
- Date: Sat, 25 Jan 2025 05:19:19 GMT
- Title: Can Large Language Models Be Trusted as Black-Box Evolutionary Optimizers for Combinatorial Problems?
- Authors: Jie Zhao, Tao Wen, Kang Hao Cheong,
- Abstract summary: Large Language Models (LLMs) offer a game-changing solution with their extensive knowledge and could democratize the optimization paradigm.
It is therefore imperative to evaluate the suitability of LLMs as evolutionary mechanism (EVO)
- Score: 8.082897040940447
- License:
- Abstract: Evolutionary computation excels in complex optimization but demands deep domain knowledge, restricting its accessibility. Large Language Models (LLMs) offer a game-changing solution with their extensive knowledge and could democratize the optimization paradigm. Although LLMs possess significant capabilities, they may not be universally effective, particularly since evolutionary optimization encompasses multiple stages. It is therefore imperative to evaluate the suitability of LLMs as evolutionary optimizer (EVO). Thus, we establish a series of rigid standards to thoroughly examine the fidelity of LLM-based EVO output in different stages of evolutionary optimization and then introduce a robust error-correction mechanism to mitigate the output uncertainty. Furthermore, we explore a cost-efficient method that directly operates on entire populations with excellent effectiveness in contrast to individual-level optimization. Through extensive experiments, we rigorously validate the performance of LLMs as operators targeted for combinatorial problems. Our findings provide critical insights and valuable observations, advancing the understanding and application of LLM-based optimization.
Related papers
- An LLM-Empowered Adaptive Evolutionary Algorithm For Multi-Component Deep Learning Systems [17.78934802009711]
Multi-objective evolutionary algorithms (MOEAs) are widely used for searching optimal solutions in complex multi-component applications.
This paper proposes $mu$MOEA, the first adaptive evolutionary search algorithm to detect safety violations in MCDL systems.
Experimental results show that $mu$MOEA can significantly improve the efficiency and diversity of the evolutionary search.
arXiv Detail & Related papers (2025-01-01T13:19:58Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
We show that gradient-based and high-level LLMs can effectively collaborate a combined optimization framework.
In this paper, we show that these complementary to each other and can effectively collaborate a combined optimization framework.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
We employ a large language model (LLM) to enhance evolutionary search for solving constrained multi-objective optimization problems.
Our aim is to speed up the convergence of the evolutionary population.
arXiv Detail & Related papers (2024-05-09T13:44:04Z) - Exploring the True Potential: Evaluating the Black-box Optimization Capability of Large Language Models [32.859634302766146]
Large language models (LLMs) have demonstrated exceptional performance in natural language processing tasks.
This paper endeavors to offer deep insights into the potential of LLMs in optimization.
Our findings reveal both the limitations and advantages of LLMs in optimization.
arXiv Detail & Related papers (2024-04-09T13:17:28Z) - Large Language Model-Based Evolutionary Optimizer: Reasoning with
elitism [1.1463861912335864]
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities.
This paper asserts that LLMs possess the capability for zero-shot optimization across diverse scenarios.
We introduce a novel population-based method for numerical optimization using LLMs.
arXiv Detail & Related papers (2024-03-04T13:57:37Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
arXiv Detail & Related papers (2024-02-18T14:08:48Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z) - Large Language Models as Evolutionary Optimizers [37.92671242584431]
We present the first study on large language models (LLMs) as evolutionarys.
The main advantage is that it requires minimal domain knowledge and human efforts, as well as no additional training of the model.
We also study the effectiveness of the self-adaptation mechanism in evolutionary search.
arXiv Detail & Related papers (2023-10-29T15:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.