An LLM-Empowered Adaptive Evolutionary Algorithm For Multi-Component Deep Learning Systems
- URL: http://arxiv.org/abs/2501.00829v1
- Date: Wed, 01 Jan 2025 13:19:58 GMT
- Title: An LLM-Empowered Adaptive Evolutionary Algorithm For Multi-Component Deep Learning Systems
- Authors: Haoxiang Tian, Xingshuo Han, Guoquan Wu, An Guo, Yuan Zhou. Jie Zhang, Shuo Li, Jun Wei, Tianwei Zhang,
- Abstract summary: Multi-objective evolutionary algorithms (MOEAs) are widely used for searching optimal solutions in complex multi-component applications.
This paper proposes $mu$MOEA, the first adaptive evolutionary search algorithm to detect safety violations in MCDL systems.
Experimental results show that $mu$MOEA can significantly improve the efficiency and diversity of the evolutionary search.
- Score: 17.78934802009711
- License:
- Abstract: Multi-objective evolutionary algorithms (MOEAs) are widely used for searching optimal solutions in complex multi-component applications. Traditional MOEAs for multi-component deep learning (MCDL) systems face challenges in enhancing the search efficiency while maintaining the diversity. To combat these, this paper proposes $\mu$MOEA, the first LLM-empowered adaptive evolutionary search algorithm to detect safety violations in MCDL systems. Inspired by the context-understanding ability of Large Language Models (LLMs), $\mu$MOEA promotes the LLM to comprehend the optimization problem and generate an initial population tailed to evolutionary objectives. Subsequently, it employs adaptive selection and variation to iteratively produce offspring, balancing the evolutionary efficiency and diversity. During the evolutionary process, to navigate away from the local optima, $\mu$MOEA integrates the evolutionary experience back into the LLM. This utilization harnesses the LLM's quantitative reasoning prowess to generate differential seeds, breaking away from current optimal solutions. We evaluate $\mu$MOEA in finding safety violations of MCDL systems, and compare its performance with state-of-the-art MOEA methods. Experimental results show that $\mu$MOEA can significantly improve the efficiency and diversity of the evolutionary search.
Related papers
- Heterogeneous Swarms: Jointly Optimizing Model Roles and Weights for Multi-LLM Systems [102.36545569092777]
We propose Heterogeneous Swarms, an algorithm to design multi-LLM systems by jointly optimizing model roles and weights.
Experiments demonstrate that Heterogeneous Swarms outperforms 15 role- and/or weight-based baselines by 18.5% on average across 12 tasks.
arXiv Detail & Related papers (2025-02-06T21:27:11Z) - Can Large Language Models Be Trusted as Black-Box Evolutionary Optimizers for Combinatorial Problems? [8.082897040940447]
Large Language Models (LLMs) offer a game-changing solution with their extensive knowledge and could democratize the optimization paradigm.
It is therefore imperative to evaluate the suitability of LLMs as evolutionary mechanism (EVO)
arXiv Detail & Related papers (2025-01-25T05:19:19Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
We employ a large language model (LLM) to enhance evolutionary search for solving constrained multi-objective optimization problems.
Our aim is to speed up the convergence of the evolutionary population.
arXiv Detail & Related papers (2024-05-09T13:44:04Z) - RLEMMO: Evolutionary Multimodal Optimization Assisted By Deep Reinforcement Learning [8.389454219309837]
multimodal optimization problems (MMOP) requires finding all optimal solutions, which is challenging in limited function evaluations.
We propose RLEMMO, a Meta-Black-Box Optimization framework, which maintains a population of solutions and incorporates a reinforcement learning agent.
With a novel reward mechanism that encourages both quality and diversity, RLEMMO can be effectively trained using a policy gradient algorithm.
arXiv Detail & Related papers (2024-04-12T05:02:49Z) - Large Language Models as Evolutionary Optimizers [37.92671242584431]
We present the first study on large language models (LLMs) as evolutionarys.
The main advantage is that it requires minimal domain knowledge and human efforts, as well as no additional training of the model.
We also study the effectiveness of the self-adaptation mechanism in evolutionary search.
arXiv Detail & Related papers (2023-10-29T15:44:52Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.