論文の概要: LightSAGE: Graph Neural Networks for Large Scale Item Retrieval in
Shopee's Advertisement Recommendation
- arxiv url: http://arxiv.org/abs/2310.19394v1
- Date: Mon, 30 Oct 2023 09:57:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 20:59:50.701764
- Title: LightSAGE: Graph Neural Networks for Large Scale Item Retrieval in
Shopee's Advertisement Recommendation
- Title(参考訳): LightSAGE:買い物客の推薦における大規模項目検索のためのグラフニューラルネットワーク
- Authors: Dang Minh Nguyen, Chenfei Wang, Yan Shen, Yifan Zeng
- Abstract要約: 我々は、グラフ構築、モデリング、データ歪の扱いにおいて、単純で斬新でインパクトに富んだテクニックを紹介します。
我々は,強信号ユーザ行動と高精度協調フィルタリング(CF)アルゴリズムを組み合わせることで,高品質な項目グラフを構築する。
そこで我々はLightSAGEと呼ばれる新しいGNNアーキテクチャを開発し、ベクトル探索のための高品質なアイテムの埋め込みを生成する。
- 参考スコア(独自算出の注目度): 2.1165011830664677
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph Neural Network (GNN) is the trending solution for item retrieval in
recommendation problems. Most recent reports, however, focus heavily on new
model architectures. This may bring some gaps when applying GNN in the
industrial setup, where, besides the model, constructing the graph and handling
data sparsity also play critical roles in the overall success of the project.
In this work, we report how GNN is applied for large-scale e-commerce item
retrieval at Shopee. We introduce our simple yet novel and impactful techniques
in graph construction, modeling, and handling data skewness. Specifically, we
construct high-quality item graphs by combining strong-signal user behaviors
with high-precision collaborative filtering (CF) algorithm. We then develop a
new GNN architecture named LightSAGE to produce high-quality items' embeddings
for vector search. Finally, we design multiple strategies to handle cold-start
and long-tail items, which are critical in an advertisement (ads) system. Our
models bring improvement in offline evaluations, online A/B tests, and are
deployed to the main traffic of Shopee's Recommendation Advertisement system.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、推薦問題におけるアイテム検索のトレンドソリューションである。
しかし最近の報告では、新しいモデルアーキテクチャに重点を置いている。
これは、GNNを産業環境に適用する際のギャップを生じさせる可能性がある。グラフの構築とデータ空間の扱いに加えて、プロジェクト全体の成功においても重要な役割を果たす。
本稿では,GNNの大規模eコマースアイテム検索への応用について報告する。
グラフの構築、モデリング、データスキューネスの処理において、単純で新しくてインパクトのあるテクニックを紹介します。
具体的には,強信号ユーザ行動と高精度協調フィルタリング(cf)アルゴリズムを組み合わせることで,高品質な項目グラフを構築する。
そこで我々はLightSAGEと呼ばれる新しいGNNアーキテクチャを開発し、ベクトル探索のための高品質なアイテムの埋め込みを生成する。
最後に、広告(ads)システムにおいて重要となるコールドスタートおよびロングテールアイテムを扱う複数の戦略を設計する。
本モデルでは,オフライン評価の改善やオンラインa/bテストを実施し,shopeeのレコメンデーション広告システムのメイントラフィックにデプロイする。
関連論文リスト
- TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
本稿では,Top-mアテンション機構アグリゲーションコンポーネントと近傍アグリゲーションコンポーネントを統合した,革新的なグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
提案手法の有効性を評価するため,提案手法をGNN分野において未探索の新たな課題である引用感情予測に適用した。
論文 参考訳(メタデータ) (2024-11-23T05:31:25Z) - Towards Graph Foundation Models for Personalization [9.405827216171629]
本稿では、パーソナライズに適したグラフベースの基礎モデリング手法を提案する。
当社のアプローチは厳格にテストされ、さまざまな製品にレコメンデーションを提供する上で有効であることが証明されています。
論文 参考訳(メタデータ) (2024-03-12T10:12:59Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
グラフニューラルネットワーク(GNN)は、グラフ表現学習に有効なツールである。
本稿では,グラフニューラルネットワークモデルの選択に非依存な GraphRETRIEVAL という検索強化方式を提案する。
我々は13のデータセットに対して包括的な実験を行い、GRAPHRETRIEVALが既存のGNNよりも大幅に改善されていることを観察した。
論文 参考訳(メタデータ) (2022-06-01T09:59:09Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
GNNを効率的に検索するためのARGNP(Automatic Relation-Aware Graph Network Proliferation)を提案する。
これらの操作は階層的なノード/リレーショナル情報を抽出し、グラフ上のメッセージパッシングのための異方的ガイダンスを提供する。
4つのグラフ学習タスクのための6つのデータセットの実験により、我々の手法によって生成されたGNNは、現在最先端の手作りおよび検索に基づくGNNよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-31T10:38:04Z) - Attention-Based Recommendation On Graphs [9.558392439655012]
グラフニューラルネットワーク(GNN)は、さまざまなタスクで顕著なパフォーマンスを示している。
本研究では,モデルベースレコメンデータシステムとしてGARecを提案する。
提案手法は,既存のモデルベース非グラフニューラルネットワークとグラフニューラルネットワークを異なるMovieLensデータセットで比較した。
論文 参考訳(メタデータ) (2022-01-04T21:02:02Z) - Edge-featured Graph Neural Architecture Search [131.4361207769865]
最適GNNアーキテクチャを見つけるために,エッジ機能付きグラフニューラルアーキテクチャ探索を提案する。
具体的には、高次表現を学習するためにリッチなエンティティとエッジの更新操作を設計する。
EGNASは、現在最先端の人間設計および検索されたGNNよりも高い性能で、より優れたGNNを検索できることを示す。
論文 参考訳(メタデータ) (2021-09-03T07:53:18Z) - Graph Neural Networks for Inconsistent Cluster Detection in Incremental
Entity Resolution [3.4806267677524896]
成熟したデータリポジトリでは、関係は概ね正しいが、元のデータやエンティティの解決システムにおけるエラーのため、漸進的な改善が必要である。
本稿では,共存しない既存関連製品群である不整合クラスタ(ic)を同定する新しい手法を提案する。
既存のMessage Passing Neural Networkがこのタスクで、従来のグラフ処理技術を上回る性能を発揮することを実証する。
論文 参考訳(メタデータ) (2021-05-12T20:39:22Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
知識グラフ(KG)は、推薦システムにおいてますます重要な役割を果たす。
既存のGNNベースのモデルは、きめ細かいインテントレベルでのユーザ項目関係の特定に失敗します。
本稿では,新しいモデルである知識グラフベースインテントネットワーク(kgin)を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:21:36Z) - GraphSAIL: Graph Structure Aware Incremental Learning for Recommender
Systems [47.51104205511256]
我々は、一般的に経験されている破滅的な忘れの問題に対処するために、グラフ構造対応インクリメンタルラーニングフレームワーク、GraphSAILを開発した。
本手法は,インクリメンタルモデル更新時にユーザの長期的嗜好(項目の長期的特性)を保存する。
論文 参考訳(メタデータ) (2020-08-25T04:33:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。