論文の概要: Attention-Based Recommendation On Graphs
- arxiv url: http://arxiv.org/abs/2201.05499v1
- Date: Tue, 4 Jan 2022 21:02:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-23 18:29:38.721974
- Title: Attention-Based Recommendation On Graphs
- Title(参考訳): グラフ上の注意に基づく勧告
- Authors: Taher Hekmatfar, Saman Haratizadeh, Parsa Razban, Sama Goliaei
- Abstract要約: グラフニューラルネットワーク(GNN)は、さまざまなタスクで顕著なパフォーマンスを示している。
本研究では,モデルベースレコメンデータシステムとしてGARecを提案する。
提案手法は,既存のモデルベース非グラフニューラルネットワークとグラフニューラルネットワークを異なるMovieLensデータセットで比較した。
- 参考スコア(独自算出の注目度): 9.558392439655012
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph Neural Networks (GNN) have shown remarkable performance in different
tasks. However, there are a few studies about GNN on recommender systems. GCN
as a type of GNNs can extract high-quality embeddings for different entities in
a graph. In a collaborative filtering task, the core problem is to find out how
informative an entity would be for predicting the future behavior of a target
user. Using an attention mechanism, we can enable GCNs to do such an analysis
when the underlying data is modeled as a graph. In this study, we proposed
GARec as a model-based recommender system that applies an attention mechanism
along with a spatial GCN on a recommender graph to extract embeddings for users
and items. The attention mechanism tells GCN how much a related user or item
should affect the final representation of the target entity. We compared the
performance of GARec against some baseline algorithms in terms of RMSE. The
presented method outperforms existing model-based, non-graph neural networks
and graph neural networks in different MovieLens datasets.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、さまざまなタスクで顕著なパフォーマンスを示している。
しかしながら、GNNのレコメンデーションシステムに関するいくつかの研究がある。
GNNの一種であるGCNは、グラフ内の異なるエンティティに対する高品質な埋め込みを抽出することができる。
協調フィルタリングタスクでは、対象ユーザの将来の振る舞いを予測するために、エンティティがどの程度情報的かを知ることが問題となる。
注意機構を用いて、基礎となるデータがグラフとしてモデル化された場合、GCNがそのような分析を行えるようにする。
本研究では,レコメンダグラフ上の空間gcnとともに注意機構を適用し,ユーザやアイテムへの埋め込みを抽出するモデルベースレコメンダシステムとしてgarecを提案する。
注意機構はGCNに、関連するユーザまたはアイテムがターゲットエンティティの最終的な表現にどの程度影響するかを伝える。
GARecの性能をRMSEのベースラインアルゴリズムと比較した。
提案手法は,既存のモデルベース非グラフニューラルネットワークとグラフニューラルネットワークを異なるMovieLensデータセットで比較した。
関連論文リスト
- A Novel Evaluation Perspective on GNNs-based Recommender Systems through the Topology of the User-Item Graph [14.12873271435375]
グラフニューラルネットワーク(GNN)ベースのレコメンデーションシステムは、レコメンデーションにおいて大きな成功を収めている。
本稿では,GNNをベースとしたレコメンデーションに対する新たな評価視点を提案し,グラフトポロジがレコメンデーション性能に与える影響について検討する。
論文 参考訳(メタデータ) (2024-08-21T16:34:53Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Taxonomy of Benchmarks in Graph Representation Learning [14.358071994798964]
グラフニューラルネットワーク(GNN)は、その固有の幾何学を考慮し、ニューラルネットワークの成功をグラフ構造化データに拡張する。
現在、グラフ表現学習ベンチマークによって、与えられたモデルのどの側面が調査されているかはよく分かっていない。
本稿では,グラフの摂動によってGNNの性能がどれだけ変化するかに基づいて,$textitsensitivity profile$に従ってベンチマークデータセットを分類する手法を開発した。
論文 参考訳(メタデータ) (2022-06-15T18:01:10Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。