MMM and MMMSynth: Clustering of heterogeneous tabular data, and synthetic data generation
- URL: http://arxiv.org/abs/2310.19454v2
- Date: Thu, 4 Apr 2024 09:38:42 GMT
- Title: MMM and MMMSynth: Clustering of heterogeneous tabular data, and synthetic data generation
- Authors: Chandrani Kumari, Rahul Siddharthan,
- Abstract summary: We provide new algorithms for two tasks relating to heterogeneous datasets: clustering, and synthetic data generation.
We demonstrate a novel EM-based clustering algorithm, MMM, that outperforms standard algorithms in determining clusters in synthetic heterogeneous data.
We also demonstrate a synthetic data generation algorithm, MMMsynth, that pre-clusters the input data, and generates cluster-wise synthetic data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide new algorithms for two tasks relating to heterogeneous tabular datasets: clustering, and synthetic data generation. Tabular datasets typically consist of heterogeneous data types (numerical, ordinal, categorical) in columns, but may also have hidden cluster structure in their rows: for example, they may be drawn from heterogeneous (geographical, socioeconomic, methodological) sources, such that the outcome variable they describe (such as the presence of a disease) may depend not only on the other variables but on the cluster context. Moreover, sharing of biomedical data is often hindered by patient confidentiality laws, and there is current interest in algorithms to generate synthetic tabular data from real data, for example via deep learning. We demonstrate a novel EM-based clustering algorithm, MMM (``Madras Mixture Model''), that outperforms standard algorithms in determining clusters in synthetic heterogeneous data, and recovers structure in real data. Based on this, we demonstrate a synthetic tabular data generation algorithm, MMMsynth, that pre-clusters the input data, and generates cluster-wise synthetic data assuming cluster-specific data distributions for the input columns. We benchmark this algorithm by testing the performance of standard ML algorithms when they are trained on synthetic data and tested on real published datasets. Our synthetic data generation algorithm outperforms other literature tabular-data generators, and approaches the performance of training purely with real data.
Related papers
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - HBIC: A Biclustering Algorithm for Heterogeneous Datasets [0.0]
Biclustering is an unsupervised machine-learning approach aiming to cluster rows and columns simultaneously in a data matrix.
We introduce a biclustering approach called HBIC, capable of discovering meaningful biclusters in complex heterogeneous data.
arXiv Detail & Related papers (2024-08-23T16:48:10Z) - Convex space learning for tabular synthetic data generation [0.0]
We introduce a deep learning architecture with a generator and discriminator component that can generate synthetic samples.
Synthetic samples generated by NextConvGeN can better preserve classification and clustering performance across real and synthetic data.
arXiv Detail & Related papers (2024-07-13T07:07:35Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
Time series data are often scarce or highly sensitive, which precludes the sharing of data between researchers and industrial organizations.
We introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling of synthetic time series.
arXiv Detail & Related papers (2023-05-19T10:11:21Z) - Generating Multidimensional Clusters With Support Lines [0.0]
We present Clugen, a modular procedure for synthetic data generation.
Cluken is open source, comprehensively unit tested and documented.
We demonstrate that Clugen is fit for use in the assessment of clustering algorithms.
arXiv Detail & Related papers (2023-01-24T22:08:24Z) - Generating Realistic Synthetic Relational Data through Graph Variational
Autoencoders [47.89542334125886]
We combine the variational autoencoder framework with graph neural networks to generate realistic synthetic relational databases.
The results indicate that real databases' structures are accurately preserved in the resulting synthetic datasets.
arXiv Detail & Related papers (2022-11-30T10:40:44Z) - Detection and Evaluation of Clusters within Sequential Data [58.720142291102135]
Clustering algorithms for Block Markov Chains possess theoretical optimality guarantees.
In particular, our sequential data is derived from human DNA, written text, animal movement data and financial markets.
It is found that the Block Markov Chain model assumption can indeed produce meaningful insights in exploratory data analyses.
arXiv Detail & Related papers (2022-10-04T15:22:39Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
We propose an ensemble learning algorithm based on conjunctions or disjunctions of decision rules.
The interpretability of the models makes them useful for biomarker discovery and patterns discovery in high dimensional data.
arXiv Detail & Related papers (2022-08-11T13:55:04Z) - Generation and Simulation of Synthetic Datasets with Copulas [0.0]
We present a complete and reliable algorithm for generating a synthetic data set comprising numeric or categorical variables.
Applying our methodology to two datasets shows better performance compared to other methods such as SMOTE and autoencoders.
arXiv Detail & Related papers (2022-03-30T13:22:44Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
We are interested in learning probabilistic generative models from high-dimensional heterogeneous data in an unsupervised fashion.
We propose a general framework that combines disparate data types through the exponential family of distributions.
The proposed algorithm is presented in detail for the commonly encountered heterogeneous datasets with real-valued (Gaussian) and categorical (multinomial) features.
arXiv Detail & Related papers (2021-08-27T18:10:31Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
This paper further extends RIn-Close_CVC, a biclustering algorithm capable of performing an efficient, complete, correct and non-redundant enumeration of maximal biclusters with constant values on columns in numerical datasets.
The improved algorithm is called RIn-Close_CVC3, keeps those attractive properties of RIn-Close_CVC, and is characterized by: a drastic reduction in memory usage; a consistent gain in runtime.
arXiv Detail & Related papers (2020-03-07T14:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.