A General Neural Causal Model for Interactive Recommendation
- URL: http://arxiv.org/abs/2310.19519v1
- Date: Mon, 30 Oct 2023 13:21:04 GMT
- Title: A General Neural Causal Model for Interactive Recommendation
- Authors: Jialin Liu, Xinyan Su, Peng Zhou, Xiangyu Zhao, Jun Li
- Abstract summary: Survivor bias in observational data leads the optimization of recommender systems towards local optima.
We propose a neural causal model to achieve counterfactual inference.
- Score: 24.98550634633534
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Survivor bias in observational data leads the optimization of recommender
systems towards local optima. Currently most solutions re-mines existing
human-system collaboration patterns to maximize longer-term satisfaction by
reinforcement learning. However, from the causal perspective, mitigating
survivor effects requires answering a counterfactual problem, which is
generally unidentifiable and inestimable. In this work, we propose a neural
causal model to achieve counterfactual inference. Specifically, we first build
a learnable structural causal model based on its available graphical
representations which qualitatively characterizes the preference transitions.
Mitigation of the survivor bias is achieved though counterfactual consistency.
To identify the consistency, we use the Gumbel-max function as structural
constrains. To estimate the consistency, we apply reinforcement optimizations,
and use Gumbel-Softmax as a trade-off to get a differentiable function. Both
theoretical and empirical studies demonstrate the effectiveness of our
solution.
Related papers
- Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Inverse decision-making using neural amortized Bayesian actors [19.128377007314317]
We amortize the Bayesian actor using a neural network trained on a wide range of parameter settings in an unsupervised fashion.
We show how our method allows for principled model comparison and how it can be used to disentangle factors that may lead to unidentifiabilities between priors and costs.
arXiv Detail & Related papers (2024-09-04T10:31:35Z) - Asymptotically Optimal Regret for Black-Box Predict-then-Optimize [7.412445894287709]
We study new black-box predict-then-optimize problems that lack special structure and where we only observe the reward from the action taken.
We present a novel loss function, which we call Empirical Soft Regret (ESR), designed to significantly improve reward when used in training.
We also show our approach significantly outperforms state-of-the-art algorithms on real-world decision-making problems in news recommendation and personalized healthcare.
arXiv Detail & Related papers (2024-06-12T04:46:23Z) - C-XGBoost: A tree boosting model for causal effect estimation [8.246161706153805]
Causal effect estimation aims at estimating the Average Treatment Effect as well as the Conditional Average Treatment Effect of a treatment to an outcome from the available data.
We propose a new causal inference model, named C-XGBoost, for the prediction of potential outcomes.
arXiv Detail & Related papers (2024-03-31T17:43:37Z) - Confronting Reward Overoptimization for Diffusion Models: A Perspective of Inductive and Primacy Biases [76.9127853906115]
Bridging the gap between diffusion models and human preferences is crucial for their integration into practical generative.
We propose Temporal Diffusion Policy Optimization with critic active neuron Reset (TDPO-R), a policy gradient algorithm that exploits the temporal inductive bias of diffusion models.
Empirical results demonstrate the superior efficacy of our methods in mitigating reward overoptimization.
arXiv Detail & Related papers (2024-02-13T15:55:41Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Towards Causal Deep Learning for Vulnerability Detection [31.59558109518435]
We introduce do calculus based causal learning to software engineering models.
Our results show that CausalVul consistently improved the model accuracy, robustness and OOD performance.
arXiv Detail & Related papers (2023-10-12T00:51:06Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Active Learning for Optimal Intervention Design in Causal Models [11.294389953686945]
We develop a causal active learning strategy to identify interventions that are optimal, as measured by the discrepancy between the post-interventional mean of the distribution and a desired target mean.
We apply our approach to both synthetic data and single-cell transcriptomic data from Perturb-CITE-seq experiments to identify optimal perturbations that induce a specific cell state transition.
arXiv Detail & Related papers (2022-09-10T20:40:30Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - A Twin Neural Model for Uplift [59.38563723706796]
Uplift is a particular case of conditional treatment effect modeling.
We propose a new loss function defined by leveraging a connection with the Bayesian interpretation of the relative risk.
We show our proposed method is competitive with the state-of-the-art in simulation setting and on real data from large scale randomized experiments.
arXiv Detail & Related papers (2021-05-11T16:02:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.