Active Learning for Optimal Intervention Design in Causal Models
- URL: http://arxiv.org/abs/2209.04744v2
- Date: Wed, 16 Aug 2023 11:03:47 GMT
- Title: Active Learning for Optimal Intervention Design in Causal Models
- Authors: Jiaqi Zhang, Louis Cammarata, Chandler Squires, Themistoklis P. Sapsis
and Caroline Uhler
- Abstract summary: We develop a causal active learning strategy to identify interventions that are optimal, as measured by the discrepancy between the post-interventional mean of the distribution and a desired target mean.
We apply our approach to both synthetic data and single-cell transcriptomic data from Perturb-CITE-seq experiments to identify optimal perturbations that induce a specific cell state transition.
- Score: 11.294389953686945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential experimental design to discover interventions that achieve a
desired outcome is a key problem in various domains including science,
engineering and public policy. When the space of possible interventions is
large, making an exhaustive search infeasible, experimental design strategies
are needed. In this context, encoding the causal relationships between the
variables, and thus the effect of interventions on the system, is critical for
identifying desirable interventions more efficiently. Here, we develop a causal
active learning strategy to identify interventions that are optimal, as
measured by the discrepancy between the post-interventional mean of the
distribution and a desired target mean. The approach employs a Bayesian update
for the causal model and prioritizes interventions using a carefully designed,
causally informed acquisition function. This acquisition function is evaluated
in closed form, allowing for fast optimization. The resulting algorithms are
theoretically grounded with information-theoretic bounds and provable
consistency results for linear causal models with known causal graph. We apply
our approach to both synthetic data and single-cell transcriptomic data from
Perturb-CITE-seq experiments to identify optimal perturbations that induce a
specific cell state transition. The causally informed acquisition function
generally outperforms existing criteria allowing for optimal intervention
design with fewer but carefully selected samples.
Related papers
- Bayesian Intervention Optimization for Causal Discovery [23.51328013481865]
Causal discovery is crucial for understanding complex systems and informing decisions.
Current methods, such as Bayesian and graph-theoretical approaches, do not prioritize decision-making.
We propose a novel Bayesian optimization-based method inspired by Bayes factors.
arXiv Detail & Related papers (2024-06-16T12:45:44Z) - Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
We show that datasets containing interventional data can be effectively extracted under realistic assumptions about the data distribution.
We introduce interventional faithfulness, which relies on comparisons between the marginal distributions of each variable across observational and interventional settings.
We also introduce Intersort, an algorithm designed to infer the causal order from datasets containing large numbers of single-variable interventions.
arXiv Detail & Related papers (2024-05-28T16:07:17Z) - Integrating Active Learning in Causal Inference with Interference: A
Novel Approach in Online Experiments [5.488412825534217]
We introduce an active learning approach: Active Learning in Causal Inference with Interference (ACI)
ACI uses Gaussian process to flexibly model the direct and spillover treatment effects as a function of a continuous measure of neighbors' treatment assignment.
We demonstrate its feasibility in achieving accurate effects estimations with reduced data requirements.
arXiv Detail & Related papers (2024-02-20T04:13:59Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal Discovery [49.084423861263524]
In this work, we propose a novel Gradient-based Intervention Targeting method, abbreviated GIT.
GIT 'trusts' the gradient estimator of a gradient-based causal discovery framework to provide signals for the intervention acquisition function.
We provide extensive experiments in simulated and real-world datasets and demonstrate that GIT performs on par with competitive baselines.
arXiv Detail & Related papers (2022-11-24T17:04:45Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
In certain settings, such as genomics, we may have data from heterogeneous study conditions, with soft (partial) interventions only pertaining to a subset of the study variables.
We define the interventional BGe score for a mixture of observational and interventional data, where the targets and effects of intervention may be unknown.
arXiv Detail & Related papers (2022-05-05T12:32:08Z) - Interventions, Where and How? Experimental Design for Causal Models at
Scale [47.63842422086614]
Causal discovery from observational and interventional data is challenging due to limited data and non-identifiability.
In this paper, we incorporate recent advances in Bayesian causal discovery into the Bayesian optimal experimental design framework.
We demonstrate the performance of the proposed method on synthetic graphs for both linear and nonlinear SCMs as well as on the in-silico single-cell gene regulatory network dataset, DREAM.
arXiv Detail & Related papers (2022-03-03T20:59:04Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Causal Bayesian Optimization [8.958125394444679]
We study the problem of globally optimizing a variable of interest that is part of a causal model in which a sequence of interventions can be performed.
Our approach combines ideas from causal inference, uncertainty quantification and sequential decision making.
We show how knowing the causal graph significantly improves the ability to reason about optimal decision making strategies.
arXiv Detail & Related papers (2020-05-24T13:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.