論文の概要: A Note on Generalization in Variational Autoencoders: How Effective Is Synthetic Data & Overparameterization?
- arxiv url: http://arxiv.org/abs/2310.19653v3
- Date: Sun, 22 Dec 2024 16:55:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:54:58.832192
- Title: A Note on Generalization in Variational Autoencoders: How Effective Is Synthetic Data & Overparameterization?
- Title(参考訳): 変分オートエンコーダの一般化に関する一考察:合成データと過パラメータ化はどの程度有効か?
- Authors: Tim Z. Xiao, Johannes Zenn, Robert Bamler,
- Abstract要約: 変分オートエンコーダ(VAEs)は、科学的応用に使用される深い確率モデルである。
我々のモチベーションは、現在訓練されている生成モデルを改善するか、あるいは傷つけるかという最近の議論に端を発する。
本研究は, 事前学習した拡散モデルからのサンプルのトレーニングと, 特定の層でより多くのパラメータを併用することにより, VAEの過剰適合を効果的に軽減できることを示す。
- 参考スコア(独自算出の注目度): 11.15942317329723
- License:
- Abstract: Variational autoencoders (VAEs) are deep probabilistic models that are used in scientific applications. Many works try to mitigate this problem from the probabilistic methods perspective by new inference techniques or training procedures. In this paper, we approach the problem instead from the deep learning perspective by investigating the effectiveness of using synthetic data and overparameterization for improving the generalization performance. Our motivation comes from (1) the recent discussion on whether the increasing amount of publicly accessible synthetic data will improve or hurt currently trained generative models; and (2) the modern deep learning insights that overparameterization improves generalization. Our investigation shows how both training on samples from a pre-trained diffusion model, and using more parameters at certain layers are able to effectively mitigate overfitting in VAEs, therefore improving their generalization, amortized inference, and robustness performance. Our study provides timely insights in the current era of synthetic data and scaling laws.
- Abstract(参考訳): 変分オートエンコーダ(VAEs)は、科学的応用に使用される深い確率モデルである。
多くの研究は、新しい推論手法や訓練手順によって、確率的手法の観点からこの問題を緩和しようと試みている。
本稿では、合成データと過パラメータ化の有効性を検証し、一般化性能を向上させることによって、ディープラーニングの観点から問題にアプローチする。
我々のモチベーションは,(1)公開合成データの増大が現在訓練されている生成モデルを改善するか,あるいは損なうかという最近の議論,(2)オーバーパラメータ化が一般化を改善するという現代のディープラーニングの洞察から来ている。
本研究は, 事前学習した拡散モデルからのサンプルのトレーニングと, 特定の層でより多くのパラメータを併用することにより, VAEの過度適合を効果的に軽減し, 一般化, 償却推論, 堅牢性性能の向上を図っている。
我々の研究は、合成データとスケーリング法則の現在の時代のタイムリーな洞察を提供する。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Informed Correctors for Discrete Diffusion Models [32.87362154118195]
モデルで学習した情報を活用することにより、より確実に離散化誤差に対処できる情報修正系を提案する。
また,$k$-Gillespie'sも提案する。これは,各モデル評価をよりよく活用するサンプリングアルゴリズムで,$tau$-leapingの速度と柔軟性を引き続き享受する。
いくつかの実・合成データセットにおいて,情報付き修正器を用いた$k$-Gillespieは,より低い計算コストで高い品質のサンプルを確実に生成することを示す。
論文 参考訳(メタデータ) (2024-07-30T23:29:29Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
事前訓練されたコードのモデルは、コード理解と生成タスクに人気がある。
このようなモデルは大きい傾向があり、訓練データの総量を必要とする。
人工的に注入されたバグのある関数など、はるかに大きくてもより現実的なデータセットを持つモデルをトレーニングすることが一般的になった。
このようなデータで訓練されたモデルは、実際のプログラムでは性能が劣りながら、同様のデータでのみうまく機能する傾向にある。
論文 参考訳(メタデータ) (2023-11-02T01:51:43Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
本稿では,任意の生成モデルの学習を指導するDiff-Instructというフレームワークを提案する。
Diff-Instructは、最先端の単一ステップ拡散モデルであることを示す。
GANモデルの精製実験により、Diff-InstructはGANモデルの事前訓練されたジェネレータを一貫して改善できることが示されている。
論文 参考訳(メタデータ) (2023-05-29T04:22:57Z) - Variational Diffusion Auto-encoder: Latent Space Extraction from
Pre-trained Diffusion Models [0.0]
可変オートエンコーダ(VAE)は、生成された画像の品質の問題に直面し、しばしば目立った曖昧さを示す。
この問題は、条件付きデータ分布を近似する非現実的な仮定である $p(textbfx | textbfz)$ が等方ガウス的であることに由来する。
本稿では,エンコーダを最適化することにより,既存の拡散モデルから潜在空間を抽出し,限界データのログ化を最大化する方法について述べる。
論文 参考訳(メタデータ) (2023-04-24T14:44:47Z) - Consistent Diffusion Models: Mitigating Sampling Drift by Learning to be
Consistent [97.64313409741614]
本稿では, モデルが生成したデータ上での予測が時間とともに一定であることを示す, 両立性特性を強制することを提案する。
CIFAR-10の条件および非条件生成とAFHQとFFHQのベースライン改良について,本研究の新たな訓練目標が得られた。
論文 参考訳(メタデータ) (2023-02-17T18:45:04Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Forgetting Data from Pre-trained GANs [28.326418377665345]
特定の種類のサンプルを忘れないように、トレーニング後にモデルを後編集する方法について検討する。
我々は,GANに対して,忘れるべきサンプルの表現方法が異なる3つの異なるアルゴリズムを提供する。
我々のアルゴリズムは、完全再トレーニングのコストのごく一部で、高品質を維持しながらデータを忘れることができる。
論文 参考訳(メタデータ) (2022-06-29T03:46:16Z) - Improved Denoising Diffusion Probabilistic Models [4.919647298882951]
その結果,ddpmは高いサンプル品質を維持しつつ,競合的なログライク性を達成できることがわかった。
また,逆拡散過程の学習分散により,フォワードパスが桁違いに小さくサンプリングできることがわかった。
これらのモデルのサンプルの品質と可能性について,モデルのキャパシティとトレーニング計算でスムーズに拡張できることを示し,スケーラビリティを向上する。
論文 参考訳(メタデータ) (2021-02-18T23:44:17Z) - Characterizing and Avoiding Problematic Global Optima of Variational
Autoencoders [28.36260646471421]
変分自動エンコーダ(VAEs)は、深部生成潜在変数モデルである。
最近の研究は、伝統的な訓練手法がデシダラタに反する解決策をもたらす傾向があることを示している。
どちらの問題も、VAEトレーニング目標のグローバルな最適度が望ましくない解決策とよく一致するという事実に起因していることを示す。
論文 参考訳(メタデータ) (2020-03-17T15:14:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。