Epidemic outbreak prediction using machine learning models
- URL: http://arxiv.org/abs/2310.19760v1
- Date: Mon, 30 Oct 2023 17:28:44 GMT
- Title: Epidemic outbreak prediction using machine learning models
- Authors: Akshara Pramod, JS Abhishek, Dr. Suganthi K
- Abstract summary: In this article, we try to predict the epidemic outbreak (influenza, hepatitis and malaria) for the state of New York, USA using machine and deep learning algorithms.
The algorithm takes historical data to predict the possible number of cases for 5 weeks into the future.
Non-clinical factors like google search trends,social media data and weather data have also been used to predict the probability of an outbreak.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In today's world,the risk of emerging and re-emerging epidemics have
increased.The recent advancement in healthcare technology has made it possible
to predict an epidemic outbreak in a region.Early prediction of an epidemic
outbreak greatly helps the authorities to be prepared with the necessary
medications and logistics required to keep things in control. In this article,
we try to predict the epidemic outbreak (influenza, hepatitis and malaria) for
the state of New York, USA using machine and deep learning algorithms, and a
portal has been created for the same which can alert the authorities and health
care organizations of the region in case of an outbreak. The algorithm takes
historical data to predict the possible number of cases for 5 weeks into the
future. Non-clinical factors like google search trends,social media data and
weather data have also been used to predict the probability of an outbreak.
Related papers
- Epidemiology-informed Graph Neural Network for Heterogeneity-aware Epidemic Forecasting [46.63739322178277]
Recent studies have demonstrated the strong potential of of-temporal neural networks (STGNNs) in extracting heterogeneous-temporal epidemic patterns.
HeatGNN learns epidemiology-informed locations embedding different locations that reflect their own transmission mechanisms over time.
HeatGNN outperforms various strong baselines of HeatHeat on different sizes of Heat.
arXiv Detail & Related papers (2024-11-26T12:29:45Z) - Infectious Disease Forecasting in India using LLM's and Deep Learning [0.3141085922386211]
This paper implements deep learning algorithms and LLM's to predict the severity of infectious disease outbreaks.
The insights from our research aim to assist in creating a robust predictive system for any outbreaks in the future.
arXiv Detail & Related papers (2024-10-26T12:54:09Z) - Event Detection from Social Media for Epidemic Prediction [76.90779562626541]
We develop a framework to extract and analyze epidemic-related events from social media posts.
Experimentation reveals how ED models trained on COVID-based SPEED can effectively detect epidemic events for three unseen epidemics.
We show that reporting sharp increases in the extracted events by our framework can provide warnings 4-9 weeks earlier than the WHO epidemic declaration for Monkeypox.
arXiv Detail & Related papers (2024-04-02T06:31:17Z) - Modeling the amplification of epidemic spread by misinformed populations [41.31724592098777]
We employ an epidemic model that incorporates a large, mobility-informed physical contact network as well as the distribution of misinformed individuals across counties derived from social media data.
We present a worst-case scenario in which a heavily misinformed population would result in an additional 14% of the U.S. population becoming infected over the course of the COVID-19 epidemic.
arXiv Detail & Related papers (2024-02-17T18:01:43Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - #StayHome or #Marathon? Social Media Enhanced Pandemic Surveillance on
Spatial-temporal Dynamic Graphs [23.67939019353524]
COVID-19 has caused lasting damage to almost every domain in public health, society, and economy.
Existing studies rely on the aggregation of traditional statistical models and epidemic spread theory.
We propose a novel framework, Social Media enhAnced pandemic knowledge based on the extracted events and relationships.
arXiv Detail & Related papers (2021-08-08T15:46:05Z) - Spatio-Temporal Multi-step Prediction of Influenza Outbreaks [4.578493011818268]
The worldwide infection places a substantial burden on people's health every year.
The methodology of considering the multi-step prediction of flu outbreaks could help forecast flu outbreaks more precisely.
Forecasting flu infection trends more accurately could help hospitals, clinics, and pharmaceutical companies to better prepare for annual flu outbreaks.
arXiv Detail & Related papers (2021-02-16T13:17:11Z) - Predicting seasonal influenza using supermarket retail records [59.18952050885709]
We consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets.
We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence.
arXiv Detail & Related papers (2020-12-08T16:30:43Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
arXiv Detail & Related papers (2020-09-23T22:35:43Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic [10.796851110372593]
We propose a heterogeneous infection rate model with human mobility for epidemic modeling.
By linearizing the model and using weighted least squares, our model is able to quickly adapt to changing trends.
We show that during the earlier part of the epidemic, using travel data increases the predictions.
arXiv Detail & Related papers (2020-04-23T07:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.