Event Detection from Social Media for Epidemic Prediction
- URL: http://arxiv.org/abs/2404.01679v2
- Date: Fri, 24 May 2024 17:58:11 GMT
- Title: Event Detection from Social Media for Epidemic Prediction
- Authors: Tanmay Parekh, Anh Mac, Jiarui Yu, Yuxuan Dong, Syed Shahriar, Bonnie Liu, Eric Yang, Kuan-Hao Huang, Wei Wang, Nanyun Peng, Kai-Wei Chang,
- Abstract summary: We develop a framework to extract and analyze epidemic-related events from social media posts.
Experimentation reveals how ED models trained on COVID-based SPEED can effectively detect epidemic events for three unseen epidemics.
We show that reporting sharp increases in the extracted events by our framework can provide warnings 4-9 weeks earlier than the WHO epidemic declaration for Monkeypox.
- Score: 76.90779562626541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media is an easy-to-access platform providing timely updates about societal trends and events. Discussions regarding epidemic-related events such as infections, symptoms, and social interactions can be crucial for informing policymaking during epidemic outbreaks. In our work, we pioneer exploiting Event Detection (ED) for better preparedness and early warnings of any upcoming epidemic by developing a framework to extract and analyze epidemic-related events from social media posts. To this end, we curate an epidemic event ontology comprising seven disease-agnostic event types and construct a Twitter dataset SPEED with human-annotated events focused on the COVID-19 pandemic. Experimentation reveals how ED models trained on COVID-based SPEED can effectively detect epidemic events for three unseen epidemics of Monkeypox, Zika, and Dengue; while models trained on existing ED datasets fail miserably. Furthermore, we show that reporting sharp increases in the extracted events by our framework can provide warnings 4-9 weeks earlier than the WHO epidemic declaration for Monkeypox. This utility of our framework lays the foundations for better preparedness against emerging epidemics.
Related papers
- SPEED++: A Multilingual Event Extraction Framework for Epidemic Prediction and Preparedness [73.73883111570458]
We introduce the first multilingual Event Extraction framework for extracting epidemic event information for a wide range of diseases and languages.
Annotating data in every language is infeasible; thus we develop zero-shot cross-lingual cross-disease models.
Our framework can provide epidemic warnings for COVID-19 in its earliest stages in Dec 2019 from Chinese Weibo posts without any training in Chinese.
arXiv Detail & Related papers (2024-10-24T03:03:54Z) - Modeling the amplification of epidemic spread by misinformed populations [41.31724592098777]
We employ an epidemic model that incorporates a large, mobility-informed physical contact network as well as the distribution of misinformed individuals across counties derived from social media data.
We present a worst-case scenario in which a heavily misinformed population would result in an additional 14% of the U.S. population becoming infected over the course of the COVID-19 epidemic.
arXiv Detail & Related papers (2024-02-17T18:01:43Z) - Epidemic outbreak prediction using machine learning models [0.0]
In this article, we try to predict the epidemic outbreak (influenza, hepatitis and malaria) for the state of New York, USA using machine and deep learning algorithms.
The algorithm takes historical data to predict the possible number of cases for 5 weeks into the future.
Non-clinical factors like google search trends,social media data and weather data have also been used to predict the probability of an outbreak.
arXiv Detail & Related papers (2023-10-30T17:28:44Z) - When Infodemic Meets Epidemic: a Systematic Literature Review [3.3454373538792543]
Social media offer significant amounts of data that can be leveraged for bio-surveillance.
This systematic literature review provides a methodical overview of the integration of social media in different epidemic-related contexts.
arXiv Detail & Related papers (2022-10-03T21:04:30Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - #StayHome or #Marathon? Social Media Enhanced Pandemic Surveillance on
Spatial-temporal Dynamic Graphs [23.67939019353524]
COVID-19 has caused lasting damage to almost every domain in public health, society, and economy.
Existing studies rely on the aggregation of traditional statistical models and epidemic spread theory.
We propose a novel framework, Social Media enhAnced pandemic knowledge based on the extracted events and relationships.
arXiv Detail & Related papers (2021-08-08T15:46:05Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
arXiv Detail & Related papers (2020-09-23T22:35:43Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
We develop Bayesian inference methods to estimate the risk that an individual is infected.
We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic.
Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact.
arXiv Detail & Related papers (2020-09-20T12:24:45Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.