Modeling the amplification of epidemic spread by misinformed populations
- URL: http://arxiv.org/abs/2402.11351v3
- Date: Tue, 30 Jul 2024 17:24:26 GMT
- Title: Modeling the amplification of epidemic spread by misinformed populations
- Authors: Matthew R. DeVerna, Francesco Pierri, Yong-Yeol Ahn, Santo Fortunato, Alessandro Flammini, Filippo Menczer,
- Abstract summary: We employ an epidemic model that incorporates a large, mobility-informed physical contact network as well as the distribution of misinformed individuals across counties derived from social media data.
We present a worst-case scenario in which a heavily misinformed population would result in an additional 14% of the U.S. population becoming infected over the course of the COVID-19 epidemic.
- Score: 41.31724592098777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding how misinformation affects the spread of disease is crucial for public health, especially given recent research indicating that misinformation can increase vaccine hesitancy and discourage vaccine uptake. However, it is difficult to investigate the interaction between misinformation and epidemic outcomes due to the dearth of data-informed holistic epidemic models. Here, we employ an epidemic model that incorporates a large, mobility-informed physical contact network as well as the distribution of misinformed individuals across counties derived from social media data. The model allows us to simulate and estimate various scenarios to understand the impact of misinformation on epidemic spreading. Using this model, we present a worst-case scenario in which a heavily misinformed population would result in an additional 14% of the U.S. population becoming infected over the course of the COVID-19 epidemic, compared to a best-case scenario.
Related papers
- Event Detection from Social Media for Epidemic Prediction [76.90779562626541]
We develop a framework to extract and analyze epidemic-related events from social media posts.
Experimentation reveals how ED models trained on COVID-based SPEED can effectively detect epidemic events for three unseen epidemics.
We show that reporting sharp increases in the extracted events by our framework can provide warnings 4-9 weeks earlier than the WHO epidemic declaration for Monkeypox.
arXiv Detail & Related papers (2024-04-02T06:31:17Z) - Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
Compartmental epidemiological models categorize individuals based on their disease status.
We propose an ABM architecture that combines an adapted SEIRD model with a decision-making model for citizens.
We illustrate the designed model by examining the progression of SARS-CoV-2 infections in A Coruna, Spain.
arXiv Detail & Related papers (2023-07-28T08:01:05Z) - When Infodemic Meets Epidemic: a Systematic Literature Review [3.3454373538792543]
Social media offer significant amounts of data that can be leveraged for bio-surveillance.
This systematic literature review provides a methodical overview of the integration of social media in different epidemic-related contexts.
arXiv Detail & Related papers (2022-10-03T21:04:30Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Misinformation, Believability, and Vaccine Acceptance Over 40 Countries:
Takeaways From the Initial Phase of The COVID-19 Infodemic [11.737540072863405]
This paper presents findings from a global survey on the extent of worldwide exposure to the COVID-19 infodemic.
We find a strong association between perceived believability of misinformation and vaccination hesitancy.
We discuss implications of our findings on public campaigns that proactively spread accurate information to countries that are more susceptible to the infodemic.
arXiv Detail & Related papers (2021-04-22T05:09:25Z) - An Extended Epidemic Model on Interconnected Networks for COVID-19 to
Explore the Epidemic Dynamics [2.89591830279936]
The pandemic control necessitates epidemic models that capture the trends and impacts on infectious individuals.
Many exciting models can implement this but they lack practical interpretability.
This study combines the epidemiological and network theories and proposes a framework with causal interpretability.
arXiv Detail & Related papers (2021-04-10T06:46:01Z) - Digital Epidemiology: A review [0.0]
The epidemiology has recently witnessed great advances based on computational models.
Big Data along with apps are enabling for validating and refining models with real world data at scale.
Ebolas have to be approached from the lens of complexity as they require systemic solutions.
arXiv Detail & Related papers (2021-04-08T08:45:20Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
arXiv Detail & Related papers (2020-09-23T22:35:43Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic [10.796851110372593]
We propose a heterogeneous infection rate model with human mobility for epidemic modeling.
By linearizing the model and using weighted least squares, our model is able to quickly adapt to changing trends.
We show that during the earlier part of the epidemic, using travel data increases the predictions.
arXiv Detail & Related papers (2020-04-23T07:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.