MgNO: Efficient Parameterization of Linear Operators via Multigrid
- URL: http://arxiv.org/abs/2310.19809v3
- Date: Wed, 26 Jun 2024 02:00:14 GMT
- Title: MgNO: Efficient Parameterization of Linear Operators via Multigrid
- Authors: Juncai He, Xinliang Liu, Jinchao Xu,
- Abstract summary: We introduce MgNO, utilizing multigrid structures to parameterize linear operators between neurons.
MgNO exhibits superior ease of training compared to other CNN-based models.
- Score: 4.096453902709292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a concise neural operator architecture for operator learning. Drawing an analogy with a conventional fully connected neural network, we define the neural operator as follows: the output of the $i$-th neuron in a nonlinear operator layer is defined by $O_i(u) = \sigma\left( \sum_j W_{ij} u + B_{ij}\right)$. Here, $ W_{ij}$ denotes the bounded linear operator connecting $j$-th input neuron to $i$-th output neuron, and the bias $ B_{ij}$ takes the form of a function rather than a scalar. Given its new universal approximation property, the efficient parameterization of the bounded linear operators between two neurons (Banach spaces) plays a critical role. As a result, we introduce MgNO, utilizing multigrid structures to parameterize these linear operators between neurons. This approach offers both mathematical rigor and practical expressivity. Additionally, MgNO obviates the need for conventional lifting and projecting operators typically required in previous neural operators. Moreover, it seamlessly accommodates diverse boundary conditions. Our empirical observations reveal that MgNO exhibits superior ease of training compared to other CNN-based models, while also displaying a reduced susceptibility to overfitting when contrasted with spectral-type neural operators. We demonstrate the efficiency and accuracy of our method with consistently state-of-the-art performance on different types of partial differential equations (PDEs).
Related papers
- Optimal Neural Network Approximation for High-Dimensional Continuous Functions [5.748690310135373]
We present a family of continuous functions that requires at least width $d$, and therefore at least $d$ intrinsic neurons, to achieve arbitrary accuracy in its approximation.
This shows that the requirement of $mathcalO(d)$ intrinsic neurons is optimal in the sense that it grows linearly with the input dimension $d$.
arXiv Detail & Related papers (2024-09-04T01:18:55Z) - Composite Bayesian Optimization In Function Spaces Using NEON -- Neural Epistemic Operator Networks [4.1764890353794994]
NEON is an architecture for generating predictions with uncertainty using a single operator network backbone.
We show that NEON achieves state-of-the-art performance while requiring orders of magnitude less trainable parameters.
arXiv Detail & Related papers (2024-04-03T22:42:37Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
We show how to significantly reduce the number of neurons required for two-layer ReLU networks.
We also prove new lower bounds that improve upon prior work, and that under certain assumptions, are best possible.
arXiv Detail & Related papers (2022-06-26T06:51:31Z) - Pseudo-Differential Neural Operator: Generalized Fourier Neural Operator
for Learning Solution Operators of Partial Differential Equations [14.43135909469058]
We propose a novel textitpseudo-differential integral operator (PDIO) to analyze and generalize the Fourier integral operator in FNO.
We experimentally validate the effectiveness of the proposed model by utilizing Darcy flow and the Navier-Stokes equation.
arXiv Detail & Related papers (2022-01-28T07:22:32Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces.
We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator.
An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations.
arXiv Detail & Related papers (2021-08-19T03:56:49Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - The Interpolation Phase Transition in Neural Networks: Memorization and
Generalization under Lazy Training [10.72393527290646]
We study phenomena in the context of two-layers neural networks in the neural tangent (NT) regime.
We prove that as soon as $Ndgg n$, the test error is well approximated by one of kernel ridge regression with respect to the infinite-width kernel.
The latter is in turn well approximated by the error ridge regression, whereby the regularization parameter is increased by a self-induced' term related to the high-degree components of the activation function.
arXiv Detail & Related papers (2020-07-25T01:51:13Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Self-Organized Operational Neural Networks with Generative Neurons [87.32169414230822]
ONNs are heterogenous networks with a generalized neuron model that can encapsulate any set of non-linear operators.
We propose Self-organized ONNs (Self-ONNs) with generative neurons that have the ability to adapt (optimize) the nodal operator of each connection.
arXiv Detail & Related papers (2020-04-24T14:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.