Composite Bayesian Optimization In Function Spaces Using NEON -- Neural Epistemic Operator Networks
- URL: http://arxiv.org/abs/2404.03099v1
- Date: Wed, 3 Apr 2024 22:42:37 GMT
- Title: Composite Bayesian Optimization In Function Spaces Using NEON -- Neural Epistemic Operator Networks
- Authors: Leonardo Ferreira Guilhoto, Paris Perdikaris,
- Abstract summary: NEON is an architecture for generating predictions with uncertainty using a single operator network backbone.
We show that NEON achieves state-of-the-art performance while requiring orders of magnitude less trainable parameters.
- Score: 4.1764890353794994
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Operator learning is a rising field of scientific computing where inputs or outputs of a machine learning model are functions defined in infinite-dimensional spaces. In this paper, we introduce NEON (Neural Epistemic Operator Networks), an architecture for generating predictions with uncertainty using a single operator network backbone, which presents orders of magnitude less trainable parameters than deep ensembles of comparable performance. We showcase the utility of this method for sequential decision-making by examining the problem of composite Bayesian Optimization (BO), where we aim to optimize a function $f=g\circ h$, where $h:X\to C(\mathcal{Y},\mathbb{R}^{d_s})$ is an unknown map which outputs elements of a function space, and $g: C(\mathcal{Y},\mathbb{R}^{d_s})\to \mathbb{R}$ is a known and cheap-to-compute functional. By comparing our approach to other state-of-the-art methods on toy and real world scenarios, we demonstrate that NEON achieves state-of-the-art performance while requiring orders of magnitude less trainable parameters.
Related papers
- Operator Learning Using Random Features: A Tool for Scientific Computing [3.745868534225104]
Supervised operator learning centers on the use of training data to estimate maps between infinite-dimensional spaces.
This paper introduces the function-valued random features method.
It leads to a supervised operator learning architecture that is practical for nonlinear problems.
arXiv Detail & Related papers (2024-08-12T23:10:39Z) - Kernel Neural Operators (KNOs) for Scalable, Memory-efficient, Geometrically-flexible Operator Learning [15.050519590538634]
The Kernel Neural Operator (KNO) is a novel operator learning technique.
It uses deep kernel-based integral operators in conjunction with quadrature for function-space approximation of operators.
KNOs represent a new paradigm of low-memory, geometrically-flexible, deep operator learning.
arXiv Detail & Related papers (2024-06-30T19:28:12Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
We present a principled approach to operator learning that can capture local features under two frameworks.
We prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs.
To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions.
arXiv Detail & Related papers (2024-02-26T18:59:31Z) - Operator SVD with Neural Networks via Nested Low-Rank Approximation [19.562492156734653]
This paper proposes a new optimization framework based on the low-rank approximation characterization of a truncated singular value decomposition.
New techniques called emphnesting for learning the top-$L$ singular values and singular functions in the correct order.
We demonstrate the effectiveness of the proposed framework for use cases in computational physics and machine learning.
arXiv Detail & Related papers (2024-02-06T03:06:06Z) - MgNO: Efficient Parameterization of Linear Operators via Multigrid [4.096453902709292]
We introduce MgNO, utilizing multigrid structures to parameterize linear operators between neurons.
MgNO exhibits superior ease of training compared to other CNN-based models.
arXiv Detail & Related papers (2023-10-16T13:01:35Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Generative Adversarial Neural Operators [59.21759531471597]
We propose the generative adversarial neural operator (GANO), a generative model paradigm for learning probabilities on infinite-dimensional function spaces.
GANO consists of two main components, a generator neural operator and a discriminator neural functional.
We empirically study GANOs in controlled cases where both input and output functions are samples from GRFs and compare its performance to the finite-dimensional counterpart GAN.
arXiv Detail & Related papers (2022-05-06T05:12:22Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces.
We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator.
An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations.
arXiv Detail & Related papers (2021-08-19T03:56:49Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.