論文の概要: General-Purpose Retrieval-Enhanced Medical Prediction Model Using
Near-Infinite History
- arxiv url: http://arxiv.org/abs/2310.20204v2
- Date: Tue, 5 Dec 2023 10:20:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 19:10:13.274782
- Title: General-Purpose Retrieval-Enhanced Medical Prediction Model Using
Near-Infinite History
- Title(参考訳): ほぼ無限履歴を用いた一般検索型医療予測モデル
- Authors: Junu Kim and Chaeeun Shim and Bosco Seong Kyu Yang and Chami Im and
Sung Yoon Lim and Han-Gil Jeong and Edward Choi
- Abstract要約: このような課題に対処するために、検索型医療予測モデル(REMed)を提案する。
REMedは基本的に、無制限の臨床イベントを評価し、関連するイベントを選択し、予測する。
- 参考スコア(独自算出の注目度): 7.748825429638433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing clinical prediction models (e.g., mortality prediction) based on
electronic health records (EHRs) typically relies on expert opinion for feature
selection and adjusting observation window size. This burdens experts and
creates a bottleneck in the development process. We propose Retrieval-Enhanced
Medical prediction model (REMed) to address such challenges. REMed can
essentially evaluate an unlimited number of clinical events, select the
relevant ones, and make predictions. This approach effectively eliminates the
need for manual feature selection and enables an unrestricted observation
window. We verified these properties through experiments on 27 clinical tasks
and two independent cohorts from publicly available EHR datasets, where REMed
outperformed other contemporary architectures that aim to handle as many events
as possible. Notably, we found that the preferences of REMed align closely with
those of medical experts. We expect our approach to significantly expedite the
development of EHR prediction models by minimizing clinicians' need for manual
involvement.
- Abstract(参考訳): 電子健康記録(ehrs)に基づく臨床予測モデル(例えば死亡予測)の開発は通常、特徴の選択と観察ウィンドウサイズの調整に専門家の意見に依存する。
これは専門家を負担し、開発プロセスのボトルネックを生み出します。
このような課題に対処するために、検索型医療予測モデル(REMed)を提案する。
REMedは基本的に、無制限の臨床イベントを評価し、関連するイベントを選択し、予測する。
このアプローチは,手動による特徴選択の必要性を効果的に排除し,無制限な観察窓を実現する。
我々はこれらの特性を27の臨床的タスクと2つの独立したEHRデータセットを用いて検証し、REMedは可能な限り多くのイベントを扱うことを目的とした他の現代のアーキテクチャよりも優れていた。
特に,REMedの嗜好は医療専門家と密接に一致していることがわかった。
我々は,手作業による介入の必要性を最小限に抑えて,EHR予測モデルの開発を著しく促進するアプローチを期待する。
関連論文リスト
- Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
本研究では,大規模言語モデル (LLM) を用いて予測モデルの事前分布を推定する手法を提案する。
本研究では,LLMがパラメータ分布を真に生成するかどうかを評価するとともに,文脈内学習と事前推論のためのモデル選択戦略を提案する。
その結果,LLMによる事前パラメータ分布は,低データ設定における非形式的先行よりも予測誤差を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-11-26T10:13:39Z) - Prompting Large Language Models for Zero-Shot Clinical Prediction with
Structured Longitudinal Electronic Health Record Data [7.815738943706123]
大規模言語モデル(LLM)は、伝統的に自然言語処理に向いている。
本研究では, GPT-4 などの LLM の EHR データへの適応性について検討する。
EHRデータの長手性、スパース性、知識を注入した性質に対応するため、本研究は特定の特徴を考慮に入れている。
論文 参考訳(メタデータ) (2024-01-25T20:14:50Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
我々は、最先端の医療自動化機械学習モデルを再現し、比較し、分析する。
その結果, 弱い構成, サンプル化の不十分さ, 評価の不十分さなどにより, いくつかのモデルの性能が低下していることが判明した。
再生モデルを用いたMIMIC-IVデータセットの総合評価を行った。
論文 参考訳(メタデータ) (2023-04-21T11:54:44Z) - Hospitalization Length of Stay Prediction using Patient Event Sequences [4.204781617630707]
本稿では,患者情報をイベントのシーケンスとしてモデル化し,入院期間(LOS)を予測するための新しいアプローチを提案する。
本稿では,患者の医療イベントシーケンスを記述したユニークな特徴を用いたLOS予測のためのトランスフォーマーベースモデルMedic-BERT(M-BERT)を提案する。
実験結果から,M-BERTは様々なLOS問題に対して高い精度を達成でき,従来の非シーケンスベース機械学習手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-03-20T11:48:36Z) - A Comprehensive Benchmark for COVID-19 Predictive Modeling Using
Electronic Health Records in Intensive Care [15.64030213048907]
集中治療室における新型コロナウイルス患者のアウトカム特異的長期予測と早期死亡予測の2つの臨床予測課題を提案する。
この2つの課題は、新型コロナウイルス(COVID-19)患者の臨床実践に対応するため、単純で不安定な長寿と死亡予測のタスクから適応される。
我々は、公平で詳細なオープンソースのデータ前処理パイプラインを提案し、2つのタスクで17の最先端予測モデルを評価する。
論文 参考訳(メタデータ) (2022-09-16T09:09:15Z) - MedGPT: Medical Concept Prediction from Clinical Narratives [0.23488056916440858]
患者の医療履歴の時間的モデリングは、将来の出来事を予測するのに使用できる。
名前付きエンティティ認識とリンクツールを用いたトランスフォーマーベースのパイプラインであるMedGPTを提案する。
本モデルでは, 医療用多選択肢質問応答タスクを用いて, 医療知識を抽出し, 評価を行った。
論文 参考訳(メタデータ) (2021-07-07T10:36:28Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Precisely Predicting Acute Kidney Injury with Convolutional Neural
Network Based on Electronic Health Record Data [2.6127142674140234]
急性腎臓損傷(AKI)は、ICU(Intensive Care Unit)患者、特に成人患者でよく起こる。
我々の研究はAKI予測精度を大幅に改善し、最高のAUROCはMIMIC-IIIデータセットで0.988、eICUデータセットで0.936となる。
論文 参考訳(メタデータ) (2020-05-27T05:39:42Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。