Physical-layer key distribution using synchronous complex dynamics of DBR semiconductor lasers
- URL: http://arxiv.org/abs/2310.20365v1
- Date: Tue, 31 Oct 2023 11:22:35 GMT
- Title: Physical-layer key distribution using synchronous complex dynamics of DBR semiconductor lasers
- Authors: Anbang Wang, Yicheng Du, Qingtian Li, Longsheng Wang, Zhiwei Jia, Yuwen Qin, Yuncai Wang,
- Abstract summary: wavelength-tunable multi-section distributed Bragg reflector (DBR) lasers are proposed as a solution for physical-layer key distribution.
Experiments show that the synchronization is sensitive to two operation parameters, i.e., currents of grating section and phase section.
Fast wavelength-shift keying synchronization can be achieved by direct modulation on one of the two currents.
- Score: 5.088060609198617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Common-signal-induced synchronization of semiconductor lasers with optical feedback inspired a promising physical key distribution with information-theoretic security and potential in high rate. A significant challenge is the requirement to shorten the synchronization recovery time for increasing key rate without sacrificing operation parameter space for security. Here, open-loop synchronization of wavelength-tunable multi-section distributed Bragg reflector (DBR) lasers is proposed as a solution for physical-layer key distribution. Experiments show that the synchronization is sensitive to two operation parameters, i.e., currents of grating section and phase section. Furthermore, fast wavelength-shift keying synchronization can be achieved by direct modulation on one of the two currents. The synchronization recovery time is shortened by one order of magnitude compared to close-loop synchronization. An experimental implementation is demonstrated with a final key rate of 5.98 Mbit/s over 160 km optical fiber distance. It is thus believed that fast-tunable multi-section semiconductor lasers opens a new avenue of high-rate physical-layer key distribution using laser synchronization.
Related papers
- Picosecond synchronization of mode-locked lasers for metropolitan-scale quantum networks [0.015705429611931054]
We demonstrate picosecond-level synchronization of two actively mode-locked Ti:Sapphire lasers via the White Rabbit Precision Time Protocol (WR-PTP)
WR-PTP serves as a scalable network synchronization protocol, and its performance is compared to traditional methods of local synchronization.
arXiv Detail & Related papers (2025-04-18T16:19:47Z) - Velocity-comb modulation transfer spectroscopy [8.286452305495274]
We propose a velocity-comb modulation transfer spectroscopy (MTS) solution that takes advantage of the velocity-selective resonance effect of multi-frequency comb lasers.
In the probe-pump configuration, each pair of counter-propagating lasers interacts with atoms from different transverse velocity-comb groups.
Preliminary proof-of-principle results show that the frequency stability of the triple-frequency laser is optimized by nearly a factor of sqrt3 compared to the single-frequency laser.
arXiv Detail & Related papers (2025-01-27T15:41:34Z) - Advantages and limitations of channel multiplexing for discrete-variable quantum key distribution [0.0]
In entanglement-based quantum key distribution schemes, key generation rates are very low.
One potential solution is to utilize wavelength-division-multiplexing (WDM) modules in order to split the photons with different wavelengths to separate detection channels and generate multiple keys in parallel.
We theoretically investigate this idea in the case of pulsed laser used to pump spontaneous parametric down-conversion source.
The results of our analysis show that the considered method can significantly accelerate the production of cryptographic keys, but proper optimization of the photon-pair source is needed to exploit its full potential.
arXiv Detail & Related papers (2024-12-20T15:55:55Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Optical transmitter for time-bin encoding Quantum Key Distribution [0.0]
We introduce an electro-optical arrangement that is able to produce time-bin encoded symbols with the decoy state method over a standard optical fiber.
The device consists of a specifically designed pulse pattern generator for pulse production, a field-programmable gate array that controls timing and synchronization.
arXiv Detail & Related papers (2023-03-27T19:00:36Z) - Clock synchronization with pulsed single photon sources [0.0]
Photonic quantum technology requires precise, time-resolved identification of photodetection events.
Here we build on recent advances of using single-photons for time transfer and employ and quantify a fast postprocessing scheme designed to pulsed single-photon sources.
We achieve an average root mean square synchronization jitter of 3.0 ps and a stability comparable to systems with ultra-stable clocks.
arXiv Detail & Related papers (2022-12-23T21:10:25Z) - Phase Randomness in a Semiconductor Laser: the Issue of Quantum Random
Number Generation [83.48996461770017]
This paper describes theoretical and experimental methods for estimating the degree of phase randomization in a gain-switched laser.
We show that the interference signal remains quantum in nature even in the presence of classical phase drift in the interferometer.
arXiv Detail & Related papers (2022-09-20T14:07:39Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Picosecond synchronization system for quantum networks [0.0]
We demonstrate a 200 MHz clock-rate fiber optic-based quantum network using off-the-shelf components combined with custom-made electronics and telecommunication C-band photons.
Our demonstration sheds light on the role of noise in quantum communication and represents a key step in realizing co-existing classical-quantum networks.
arXiv Detail & Related papers (2022-03-07T04:38:28Z) - Dual-laser self-injection locking to an integrated microresonator [93.17495788476688]
We experimentally demonstrate the dual-laser SIL of two multifrequency laser diodes to different modes of an integrated Si$_3$N$_4$ microresonator.
Locking both lasers to the same mode results in a simultaneous frequency and phase stabilization and coherent addition of their outputs.
arXiv Detail & Related papers (2022-01-06T16:25:15Z) - Gigahertz measurement-device-independent quantum key distribution using
directly modulated lasers [0.0]
Measurement-device-independent quantum key distribution (MDI-QKD) is a technique for quantum-secured communication.
We introduce a simple and compact MDI-QKD system design at gigahertz clock rates with enhanced resilience to laser fluctuations.
Our design enables secure key rates that improve upon the state of the art by an order of magnitude, up to 8 bps at 54 dB channel loss and 2 kbps in the finite-size regime for 30 dB channel loss.
arXiv Detail & Related papers (2021-05-14T10:17:10Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Secure and efficient synchronization scheme for quantum key distribution [2.8114538315299558]
We propose an alternative synchronization scheme by fixing the relative delay of the signal time window among all SPDs.
The new scheme is not only immune to the vulnerability but also improves the synchronization time from usually a few seconds to tens of milliseconds.
arXiv Detail & Related papers (2020-02-25T04:41:56Z) - Thermal coupling and effect of subharmonic synchronization in a system
of two VO2 based oscillators [55.41644538483948]
We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices.
The effective action radius RTC of coupling depends both on the total energy released during switching and on the average power.
In the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by 10 %.
The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.
arXiv Detail & Related papers (2020-01-06T03:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.