Clock synchronization with pulsed single photon sources
- URL: http://arxiv.org/abs/2212.12589v2
- Date: Fri, 20 Oct 2023 13:19:45 GMT
- Title: Clock synchronization with pulsed single photon sources
- Authors: Christopher Spiess and Fabian Steinlechner
- Abstract summary: Photonic quantum technology requires precise, time-resolved identification of photodetection events.
Here we build on recent advances of using single-photons for time transfer and employ and quantify a fast postprocessing scheme designed to pulsed single-photon sources.
We achieve an average root mean square synchronization jitter of 3.0 ps and a stability comparable to systems with ultra-stable clocks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photonic quantum technology requires precise, time-resolved identification of
photodetection events. In distributed quantum networks with spatially separated
and drifting time references, achieving high precision is particularly
challenging. Here we build on recent advances of using single-photons for time
transfer and employ and quantify a fast postprocessing scheme designed to
pulsed single-photon sources. We achieve an average root mean square
synchronization jitter of 3.0 ps and a stability comparable to systems with
ultra-stable clocks (54 ps at 1 second integration time, in terms of Allan time
deviation). Our algorithm compensates substantial clock imperfections from
crystal oscillators, is superior for low signal scenarios, and allows the
quantum communication networks to transmit data simultaneously to time
transfer.
Related papers
- Time-bin entangled Bell state generation and tomography on thin-film lithium niobate [36.6385169124258]
Lithium niobate-on-insulator has emerged as a revolutionising platform for high-speed classical telecommunication.
We generate maximally entangled quantum states in the time-bin basis using lithium niobate-on-insulator photonics.
Our results, combined with the established large electro-optic bandwidth of lithium niobate, showcase the platform as perfect candidate to realise fibre-coupled, high-speed time-bin quantum communication modules.
arXiv Detail & Related papers (2024-07-04T16:43:36Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Generation of a time-bin Greenberger--Horne--Zeilinger state with an
optical switch [0.0]
Multipartite entanglement exhibits much richer phenomenon and stronger correlations than in bipartite systems.
Time-bin qubits have a particularly important role to play in quantum communication systems.
We generate a three-photon time-bin Greenberger-Horne-Zeilinger (GHZ) state using a 2 x 2 optical switch.
arXiv Detail & Related papers (2023-04-12T08:11:23Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Quantum time transfer: a practical method for lossy and noisy channels [0.0]
This article explores the utility of low-performance quantum-photon sources for quantum networking.
It provides picosecond-level timing precision even under high loss and high noise channel conditions representative of daytime space-Earth links.
This method is relevant for daytime space-Earth quantum networking and/or providing high-precision secure timing in GPS denied environments.
arXiv Detail & Related papers (2022-11-01T20:33:52Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Clock synchronization with correlated photons [1.7695353451204014]
Event synchronisation is a ubiquitous task, with applications ranging from 5G technology to industrial automation and smart power grids.
Here we show how temporal correlations of energy-time entangled photons may be harnessed for synchronisation in quantum networks.
We achieve stable jitter synchronisation 68 ps with as few as 44 correlated detection events per 100-ms data package.
arXiv Detail & Related papers (2021-08-30T18:25:36Z) - Quantum communication with ultrafast time-bin qubits [0.0]
We experimentally demonstrate the feasibility of picosecond time-bin states of light, known as ultrafast time-bins, for applications in quantum communications.
With the ability to measure time-bin superpositions with excellent phase stability, we enable the use of temporal states in efficient quantum key distribution protocols.
arXiv Detail & Related papers (2021-06-17T22:08:08Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Towards satellite-based quantum-secure time transfer [6.971780549888377]
We propose a satellite-based quantum-secure time transfer (QSTT) scheme based on two-way quantum key distribution (QKD) in free-space.
In QSTT, a quantum signal (e.g., single photon) is used as the carrier for both the time transfer and the secret-key generation, offering quantum-enhanced security for transferring time signal and time information.
We perform a satellite-to-ground time synchronization using single-photon-level signals and achieve a quantum bit error rate of less than 1%, a time data rate of 9 kHz and a time-transfer
arXiv Detail & Related papers (2020-06-01T01:50:18Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.