Harnessing collective radiative phenomena on a photonic kagome lattice
- URL: http://arxiv.org/abs/2310.20445v1
- Date: Tue, 31 Oct 2023 13:28:11 GMT
- Title: Harnessing collective radiative phenomena on a photonic kagome lattice
- Authors: Ignacio Salinas, Javier Cubillos Cornejo, Alexander Szameit, Pablo
Solano, and Rodrigo A. Vicencio
- Abstract summary: Photonic lattices enable experimental exploration of transport and localization phenomena.
Photonic lattices are a platform to emulate and experimentally explore quantum optical phenomena in two-dimensional structured reservoirs.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photonic lattices enable experimental exploration of transport and
localization phenomena, two of the mayor goals in physics and technology. In
particular, the optical excitation of some lattice sites which evanescently
couple to a lattice array emulates radiation processes into structured
reservoirs, a fundamental subject in quantum optics. Moreover, the simultaneous
excitation of two sites simulates collective phenomena, leading to
phase-controlled enhanced or suppressed radiation, namely super and
subradiance. This work presents an experimental study of collective radiative
processes on a photonic kagome lattice. A single or simultaneous -- in or
out-of-phase -- excitation of the outlying sites controls the radiation
dynamics. Specifically, we demonstrate a controlable transition between a fully
localized profile at the two outlying sites and a completely dispersed state
into the quasi-continuum. Our result presents photonic lattices as a platform
to emulate and experimentally explore quantum optical phenomena in
two-dimensional structured reservoirs, while harnessing such phenomena for
controlling transport dynamics and implementing all-optical switching devices.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - Quantum Multiphoton Rabi Oscillations in Waveguide QED [0.0]
Future of quantum information processing hinges on chip-scale nanophotonics, specifically cavity QED and waveguide QED.
One of the foremost processes underpinning quantum photonic technologies is the phenomenon of Rabi oscillations.
We analytically explore the scattering dynamics of the photonic Fock state as it interfaces with a two-level emitter.
arXiv Detail & Related papers (2023-10-24T00:03:38Z) - Connecting steady-states of driven-dissipative photonic lattices with
spontaneous collective emission phenomena [91.3755431537592]
We use intuition to predict the formation of non-trivial photonic steady-states in one and two dimensions.
We show that subradiant emitter configurations are linked to the emergence of steady-state light-localization in the driven-dissipative setting.
These results shed light on the recently reported optically-defined cavities in polaritonic lattices.
arXiv Detail & Related papers (2021-12-27T23:58:42Z) - Effects of spatial quantization and Rabi-shifted resonances in single
and double excitation of quantum wells and wires induced by few-photon
optical field [0.0]
We study the dynamics of Frenkel excitons and bi-excitons induced by few photon quantum light in a quantum well or wire of finite size.
The eigenenergies and eigenfunctions of the coupled exciton-photon states in a multiatomic system are found.
The role of spatial confinement as well as the energy quantization effects in 1D and 2D cases is analyzed.
arXiv Detail & Related papers (2021-12-08T10:39:33Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.