Observation of non-Markovian Radiative Phenomena in Structured Photonic Lattices
- URL: http://arxiv.org/abs/2501.09261v1
- Date: Thu, 16 Jan 2025 03:05:41 GMT
- Title: Observation of non-Markovian Radiative Phenomena in Structured Photonic Lattices
- Authors: Rodrigo A. Vicencio, Fabiola G. L. Carcamo-Macaya, Pablo Solano,
- Abstract summary: We study the non-Markovian radiation dynamics of an emitter coupled to two-dimensional structured reservoirs.
Our platform opens a path for the experimental exploration of single photon quantum optical phenomena in structured reservoirs.
- Score: 0.0
- License:
- Abstract: The spectral structure of a photonic reservoir shapes radiation phenomena for embedded quantum emitters. We implement an all-optical analogue to study such an effect, particularly to observe the non-Markovian radiation dynamics of an emitter coupled to two-dimensional structured reservoirs. Its dynamics is simulated by light propagating through a photonic lattice, acting as a reservoir for an adjacent waveguide that mimics a coupled quantum emitter. We study radiation dynamics in square and Lieb lattices under different coupling regimes and observe how the flat band properties of the Lieb lattice significantly enhances light-matter coupling and non-Markovianity. Our platform opens a path for the experimental exploration of single photon quantum optical phenomena in structured reservoirs to enhance light-matter interactions.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Harnessing collective radiative phenomena on a photonic kagome lattice [39.58317527488534]
Photonic lattices enable experimental exploration of transport and localization phenomena.
Photonic lattices are a platform to emulate and experimentally explore quantum optical phenomena in two-dimensional structured reservoirs.
arXiv Detail & Related papers (2023-10-31T13:28:11Z) - Dynamics Near a Photonic Band-Edge: Strong Coupling Effects Beyond
Rotating-Wave Approximation [0.0]
We study the dynamics of a quantum emitter coupled to a two-dimensional photonic crystal featuring a finite bandwidth with sharp edges and a Van-Hove singularity.
arXiv Detail & Related papers (2022-07-26T16:12:19Z) - Sub-radiant states for imperfect quantum emitters coupled by a
nanophotonic waveguide [0.0]
We investigate the optical interaction between two quantum emitters mediated by one-dimensional waveguides in a realistic solid-state environment.
We show that as dephasing increases, the signatures of sub-radiance quickly vanish in intensity measurements.
The work lays out a route to the experimental realization of sub-radiant states in nanophotonic waveguides containing solid-state emitters.
arXiv Detail & Related papers (2022-06-01T15:34:56Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Optical properties of a waveguide-mediated chain of randomly positioned
atoms [1.263953193517797]
We study the optical properties of an ensemble of two-level atoms coupled to a one-dimensional waveguide.
Results reveal that the optical transport properties of the atomic ensemble are influenced by the lattice constant and the filling factor of the lattice sites.
arXiv Detail & Related papers (2020-03-14T10:17:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.