A Survey on Federated Unlearning: Challenges, Methods, and Future Directions
- URL: http://arxiv.org/abs/2310.20448v4
- Date: Tue, 16 Jul 2024 06:29:20 GMT
- Title: A Survey on Federated Unlearning: Challenges, Methods, and Future Directions
- Authors: Ziyao Liu, Yu Jiang, Jiyuan Shen, Minyi Peng, Kwok-Yan Lam, Xingliang Yuan, Xiaoning Liu,
- Abstract summary: In recent years, the notion of the right to be forgotten" (RTBF) has become a crucial aspect of data privacy for digital trust and AI safety.
Machine unlearning (MU) has gained considerable attention which allows an ML model to selectively eliminate identifiable information.
FU has emerged to confront the challenge of data erasure within federated learning settings.
- Score: 21.90319100485268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the notion of ``the right to be forgotten" (RTBF) has become a crucial aspect of data privacy for digital trust and AI safety, requiring the provision of mechanisms that support the removal of personal data of individuals upon their requests. Consequently, machine unlearning (MU) has gained considerable attention which allows an ML model to selectively eliminate identifiable information. Evolving from MU, federated unlearning (FU) has emerged to confront the challenge of data erasure within federated learning (FL) settings, which empowers the FL model to unlearn an FL client or identifiable information pertaining to the client. Nevertheless, the distinctive attributes of federated learning introduce specific challenges for FU techniques. These challenges necessitate a tailored design when developing FU algorithms. While various concepts and numerous federated unlearning schemes exist in this field, the unified workflow and tailored design of FU are not yet well understood. Therefore, this comprehensive survey delves into the techniques and methodologies in FU providing an overview of fundamental concepts and principles, evaluating existing federated unlearning algorithms, and reviewing optimizations tailored to federated learning. Additionally, it discusses practical applications and assesses their limitations. Finally, it outlines promising directions for future research.
Related papers
- Ten Challenging Problems in Federated Foundation Models [55.343738234307544]
Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning.
This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency.
arXiv Detail & Related papers (2025-02-14T04:01:15Z) - A study on performance limitations in Federated Learning [0.05439020425819]
This project focuses on the communication bottleneck and data Non IID-ness, and its effect on the performance of the models.
Google introduced Federated Learning in 2016.
This project will be focusing on the communication bottleneck and data Non IID-ness, and its effect on the performance of the models.
arXiv Detail & Related papers (2025-01-07T02:35:41Z) - Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy, Research, and Practice [186.055899073629]
Unlearning is often invoked as a solution for removing the effects of targeted information from a generative-AI model.
Unlearning is also proposed as a way to prevent a model from generating targeted types of information in its outputs.
Both of these goals--the targeted removal of information from a model and the targeted suppression of information from a model's outputs--present various technical and substantive challenges.
arXiv Detail & Related papers (2024-12-09T20:18:43Z) - Federated Unlearning: A Survey on Methods, Design Guidelines, and Evaluation Metrics [2.7456900944642686]
Federated unlearning (FU) algorithms efficiently remove clients' contributions without full model retraining.
This article provides background concepts, empirical evidence, and practical guidelines to design/implement efficient FU schemes.
arXiv Detail & Related papers (2024-01-10T13:26:19Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
Federated learning(FL) has emerged as a promising paradigm for training machine learning models in a distributed and privacy-preserving manner.
The choice of methods used for models plays a crucial role in the performance, convergence speed, communication efficiency, privacy guarantees of federated learning systems.
Our research meticulously compares, categorizes, and delineates the merits and demerits of each technique, examining their applicability across diverse FL scenarios.
arXiv Detail & Related papers (2023-10-31T23:26:58Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.
This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.
We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Federated Learning: Balancing the Thin Line Between Data Intelligence
and Privacy [0.0]
Federated learning holds great promise in learning from fragmented sensitive data.
This article provides a systematic overview and detailed taxonomy of federated learning.
We investigate the existing security challenges in federated learning and provide an overview of established defense techniques for data poisoning, inference attacks, and model poisoning attacks.
arXiv Detail & Related papers (2022-04-22T23:39:16Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Federated Edge Learning : Design Issues and Challenges [1.916348196696894]
Federated Learning (FL) is a distributed machine learning technique, where each device contributes to the learning model by independently computing the gradient based on its local training data.
implementing FL at the network edge is challenging due to system and data heterogeneity and resources constraints.
This article proposes a general framework for the data-aware scheduling as a guideline for future research directions.
arXiv Detail & Related papers (2020-08-31T19:56:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.