論文の概要: Group-Feature (Sensor) Selection With Controlled Redundancy Using Neural Networks
- arxiv url: http://arxiv.org/abs/2310.20524v2
- Date: Wed, 25 Sep 2024 06:34:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 09:50:02.567894
- Title: Group-Feature (Sensor) Selection With Controlled Redundancy Using Neural Networks
- Title(参考訳): ニューラルネットワークを用いた冗長性制御によるグループ機能(センサ)選択
- Authors: Aytijhya Saha, Nikhil R. Pal,
- Abstract要約: 本稿では,MLP(Multi-layer Perceptron)ネットワークに基づく新しい特徴選択手法を提案する。
グループ機能やセンサ選択の問題に対して一般化し、選択した特徴やグループ間の冗長性のレベルを制御できる。
- 参考スコア(独自算出の注目度): 6.22307828185024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a novel embedded feature selection method based on a Multi-layer Perceptron (MLP) network and generalize it for group-feature or sensor selection problems, which can control the level of redundancy among the selected features or groups. Additionally, we have generalized the group lasso penalty for feature selection to encompass a mechanism for selecting valuable group features while simultaneously maintaining a control over redundancy. We establish the monotonicity and convergence of the proposed algorithm, with a smoothed version of the penalty terms, under suitable assumptions. Experimental results on several benchmark datasets demonstrate the promising performance of the proposed methodology for both feature selection and group feature selection over some state-of-the-art methods.
- Abstract(参考訳): 本稿では,MLP(Multi-layer Perceptron)ネットワークに基づく新しい特徴選択手法を提案する。
さらに,機能選択のためのグループラッソペナルティを一般化し,冗長性の制御を同時に維持しつつ,価値あるグループ特徴を選択するメカニズムを包含した。
提案アルゴリズムの単調性と収束性を,適切な仮定の下でスムーズなペナルティ項を用いて確立する。
いくつかのベンチマークデータセットによる実験結果から,提案手法は,いくつかの最先端手法に対して,特徴選択とグループ特徴選択の両方に対して有望な性能を示す。
関連論文リスト
- Multi-Teacher Multi-Objective Meta-Learning for Zero-Shot Hyperspectral Band Selection [50.30291173608449]
ゼロショットハイパースペクトル帯選択のための新しい多目的メタラーニングネットワーク(M$3$BS)を提案する。
M$3$BSでは、データセットに依存しないベースを生成するために、一般化可能なグラフ畳み込みネットワーク(GCN)を構築している。
取得したメタ知識は、トレーニングや微調整なしに、直接見えないデータセットに転送することができる。
論文 参考訳(メタデータ) (2024-06-12T07:13:31Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
本研究では, 逐次再構成, 変分, 性能評価器の損失を伴って, 深部変分変圧器モデルを構築した。
提案モデルでは,特徴選択の知識を抽出し,連続的な埋め込み空間を学習し,特徴選択決定シーケンスをユーティリティスコアに関連付けられた埋め込みベクトルにマッピングする。
論文 参考訳(メタデータ) (2024-03-06T16:31:56Z) - Enhancing Neural Subset Selection: Integrating Background Information into Set Representations [53.15923939406772]
対象値が入力集合とサブセットの両方に条件付けされている場合、スーパーセットのテクスティ不変な統計量を関心のサブセットに組み込むことが不可欠であることを示す。
これにより、出力値がサブセットとその対応するスーパーセットの置換に不変であることを保証する。
論文 参考訳(メタデータ) (2024-02-05T16:09:35Z) - A Performance-Driven Benchmark for Feature Selection in Tabular Deep
Learning [131.2910403490434]
データサイエンティストは通常、データセットにできるだけ多くの機能を集め、既存の機能から新しい機能を設計する。
既存のタブ形式の特徴選択のためのベンチマークでは、古典的な下流モデル、おもちゃの合成データセット、あるいは下流のパフォーマンスに基づいて特徴セレクタを評価していない。
変換器を含む下流ニューラルネットワーク上で評価された課題のある特徴選択ベンチマークを構築した。
また,従来の特徴選択法よりも高い性能を有するニューラルネットワークのための,Lassoのインプット・グラディエント・ベース・アナログも提案する。
論文 参考訳(メタデータ) (2023-11-10T05:26:10Z) - Sparse-Input Neural Network using Group Concave Regularization [10.103025766129006]
ニューラルネットワークでは、同時特徴選択と非線形関数推定が困難である。
低次元と高次元の両方の設定における特徴選択のための群凹正規化を用いたスパースインプットニューラルネットワークの枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-01T13:47:09Z) - Gated recurrent units and temporal convolutional network for multilabel
classification [122.84638446560663]
本研究は,マルチラベル分類を管理するための新しいアンサンブル手法を提案する。
提案手法のコアは,Adamグラデーション最適化アプローチの変種で訓練された,ゲート再帰単位と時間畳み込みニューラルネットワークの組み合わせである。
論文 参考訳(メタデータ) (2021-10-09T00:00:16Z) - Clustering-Based Subset Selection in Evolutionary Multiobjective
Optimization [11.110675371854988]
サブセット選択は進化的多目的最適化(EMO)アルゴリズムにおいて重要な要素である。
クラスタリングに基づく手法は、EMOアルゴリズムによって得られた解集合からの部分集合選択の文脈では評価されていない。
論文 参考訳(メタデータ) (2021-08-19T02:56:41Z) - Inference post Selection of Group-sparse Regression Models [2.1485350418225244]
条件推論は、自動モデル選択からのデータが推論のために再利用されるとき、バイアスに対処するための厳密なアプローチを提供する。
本稿では,線形モデル内の不確実性を評価するための統計的に一貫したベイズ的枠組みを開発する。
遺伝子、タンパク質、遺伝的変異体、神経画像計測がそれぞれ生物学的経路、分子機能、調節領域、認知的役割によってグループ化された場合、これらのモデルはグループスパース学習アルゴリズムの有用なクラスによって選択される。
論文 参考訳(メタデータ) (2020-12-31T15:43:26Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
本稿では,共同適応グラフと構造付き空間正規化unsupervised feature selection (JASFS)法を提案する。
最適な機能のサブセットがグループで選択され、選択された機能の数が自動的に決定される。
8つのベンチマーク実験の結果,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2020-10-09T08:17:04Z) - Supervised Feature Subset Selection and Feature Ranking for Multivariate
Time Series without Feature Extraction [78.84356269545157]
MTS分類のための教師付き特徴ランキングと特徴サブセット選択アルゴリズムを導入する。
MTSの既存の教師なし特徴選択アルゴリズムとは異なり、我々の手法は時系列から一次元特徴ベクトルを生成するために特徴抽出ステップを必要としない。
論文 参考訳(メタデータ) (2020-05-01T07:46:29Z) - Outlier Detection Ensemble with Embedded Feature Selection [42.8338013000469]
組込み特徴選択(ODEFS)を用いた外乱検出アンサンブルフレームワークを提案する。
各ランダムなサブサンプリングベースの学習コンポーネントに対して、ODEFSは、特徴選択と外れ値検出をペアのランキング式に統一する。
我々は、特徴選択と例選択を同時に最適化するために閾値付き自己評価学習を採用する。
論文 参考訳(メタデータ) (2020-01-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。