Unexpected Improvements to Expected Improvement for Bayesian Optimization
- URL: http://arxiv.org/abs/2310.20708v3
- Date: Tue, 07 Jan 2025 13:11:19 GMT
- Title: Unexpected Improvements to Expected Improvement for Bayesian Optimization
- Authors: Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, Eytan Bakshy,
- Abstract summary: We propose LogEI, a new family of acquisition functions whose members either have identical or approximately equal optima as their canonical counterparts, but are substantially easier to optimize numerically.
Our empirical results show that members of the LogEI family of acquisition functions substantially improve on the optimization performance of their canonical counterparts and surprisingly, are on par with or exceed the performance of recent state-of-the-art acquisition functions.
- Score: 21.901803477674264
- License:
- Abstract: Expected Improvement (EI) is arguably the most popular acquisition function in Bayesian optimization and has found countless successful applications, but its performance is often exceeded by that of more recent methods. Notably, EI and its variants, including for the parallel and multi-objective settings, are challenging to optimize because their acquisition values vanish numerically in many regions. This difficulty generally increases as the number of observations, dimensionality of the search space, or the number of constraints grow, resulting in performance that is inconsistent across the literature and most often sub-optimal. Herein, we propose LogEI, a new family of acquisition functions whose members either have identical or approximately equal optima as their canonical counterparts, but are substantially easier to optimize numerically. We demonstrate that numerical pathologies manifest themselves in "classic" analytic EI, Expected Hypervolume Improvement (EHVI), as well as their constrained, noisy, and parallel variants, and propose corresponding reformulations that remedy these pathologies. Our empirical results show that members of the LogEI family of acquisition functions substantially improve on the optimization performance of their canonical counterparts and surprisingly, are on par with or exceed the performance of recent state-of-the-art acquisition functions, highlighting the understated role of numerical optimization in the literature.
Related papers
- A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
Non optimization is central to machine learning, but the general framework non convexity enables weak convergence guarantees too pessimistic compared to the other hand.
We introduce a novel unified assumption in non convex algorithms.
arXiv Detail & Related papers (2025-02-17T21:25:31Z) - A Unified Framework for Entropy Search and Expected Improvement in Bayesian Optimization [6.745285924097932]
We introduce a unified theoretical framework, Variational Entropy Search, which reveals that EI and information-theoretic acquisition functions are more closely related than previously recognized.
We propose VES-Gamma, a novel acquisition function that balances the strengths of EI and MES.
arXiv Detail & Related papers (2025-01-30T21:15:00Z) - Indirect Query Bayesian Optimization with Integrated Feedback [17.66813850517961]
We develop a new class of Bayesian optimization problems where integrated feedback is given via a conditional expectation of the unknown function $f$ to be optimized.
The goal is to find the global optimum of $f$ by adaptively querying and observing in the space transformed by the conditional distribution.
This is motivated by real-world applications where one cannot access direct feedback due to privacy, hardware or computational constraints.
arXiv Detail & Related papers (2024-12-18T07:20:33Z) - Evolutionary Pre-Prompt Optimization for Mathematical Reasoning [45.461506988071534]
This paper explores the optimization of example selection for designing effective chain-of-thought pre-prompts.
It shows that the choice of the algorithm, typically in favor of comparison-based methods such as evolutionary computation, significantly enhances efficacy and feasibility.
arXiv Detail & Related papers (2024-12-05T16:12:06Z) - Benchmarking Optimizers for Qumode State Preparation with Variational Quantum Algorithms [10.941053143198092]
There has been a growing interest in qumodes due to advancements in the field and their potential applications.
This paper aims to bridge this gap by providing performance benchmarks of various parameters used in state preparation with Variational Quantum Algorithms.
arXiv Detail & Related papers (2024-05-07T17:15:58Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Optimizer Amalgamation [124.33523126363728]
We are motivated to study a new problem named Amalgamation: how can we best combine a pool of "teacher" amalgamations into a single "student" that can have stronger problem-specific performance?
First, we define three differentiable mechanisms to amalgamate a pool of analyticals by gradient descent.
In order to reduce variance of the process, we also explore methods to stabilize the process by perturbing the target.
arXiv Detail & Related papers (2022-03-12T16:07:57Z) - Are we Forgetting about Compositional Optimisers in Bayesian
Optimisation? [66.39551991177542]
This paper presents a sample methodology for global optimisation.
Within this, a crucial performance-determiningtrivial is maximising the acquisition function.
We highlight the empirical advantages of the approach to optimise functionation across 3958 individual experiments.
arXiv Detail & Related papers (2020-12-15T12:18:38Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Differentiable Expected Hypervolume Improvement for Parallel
Multi-Objective Bayesian Optimization [11.956059322407437]
We leverage recent advances in programming models and hardware acceleration for multi-objective BO using Expected Hyper Improvement (EHVI)
We derive a novel formulation of q-Expected Hyper Improvement (qEHVI), an acquisition function that extends EHVI to the parallel, constrained evaluation setting.
Our empirical evaluation demonstrates that qEHVI is computationally tractable in many practical scenarios and outperforms state-of-the-art multi-objective BO algorithms at a fraction of their wall time.
arXiv Detail & Related papers (2020-06-09T06:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.