A Tractable Inference Perspective of Offline RL
- URL: http://arxiv.org/abs/2311.00094v2
- Date: Sat, 25 May 2024 07:06:06 GMT
- Title: A Tractable Inference Perspective of Offline RL
- Authors: Xuejie Liu, Anji Liu, Guy Van den Broeck, Yitao Liang,
- Abstract summary: A popular paradigm for offline Reinforcement Learning (RL) tasks is to first fit the offline trajectories to a sequence model, and then prompt the model for actions that lead to high expected return.
This paper highlights that tractability, the ability to exactly and efficiently answer various probabilistic queries, plays an important role in offline RL.
We propose Trifle, which bridges the gap between good sequence models and high expected returns at evaluation time.
- Score: 36.563229330549284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A popular paradigm for offline Reinforcement Learning (RL) tasks is to first fit the offline trajectories to a sequence model, and then prompt the model for actions that lead to high expected return. In addition to obtaining accurate sequence models, this paper highlights that tractability, the ability to exactly and efficiently answer various probabilistic queries, plays an important role in offline RL. Specifically, due to the fundamental stochasticity from the offline data-collection policies and the environment dynamics, highly non-trivial conditional/constrained generation is required to elicit rewarding actions. it is still possible to approximate such queries, we observe that such crude estimates significantly undermine the benefits brought by expressive sequence models. To overcome this problem, this paper proposes Trifle (Tractable Inference for Offline RL), which leverages modern Tractable Probabilistic Models (TPMs) to bridge the gap between good sequence models and high expected returns at evaluation time. Empirically, Trifle achieves the most state-of-the-art scores in 9 Gym-MuJoCo benchmarks against strong baselines. Further, owing to its tractability, Trifle significantly outperforms prior approaches in stochastic environments and safe RL tasks (e.g. with action constraints) with minimum algorithmic modifications.
Related papers
- Tackling Long-Horizon Tasks with Model-based Offline Reinforcement Learning [6.345851712811528]
We introduce a novel model-based offline RL method, Lower Expectile Q-learning (LEQ), which enhances long-horizon task performance.
Our empirical results show that LEQ significantly outperforms previous model-based offline RL methods on long-horizon tasks.
LEQ achieves performance comparable to the state-of-the-art model-based and model-free offline RL methods on the NeoRL benchmark and the D4RL MuJoCo Gym tasks.
arXiv Detail & Related papers (2024-06-30T13:44:59Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Robust Reinforcement Learning using Offline Data [23.260211453437055]
We propose a robust reinforcement learning algorithm called Robust Fitted Q-Iteration (RFQI)
RFQI uses only an offline dataset to learn the optimal robust policy.
We prove that RFQI learns a near-optimal robust policy under standard assumptions.
arXiv Detail & Related papers (2022-08-10T03:47:45Z) - Reinforcement Learning as One Big Sequence Modeling Problem [84.84564880157149]
Reinforcement learning (RL) is typically concerned with estimating single-step policies or single-step models.
We view RL as a sequence modeling problem, with the goal being to predict a sequence of actions that leads to a sequence of high rewards.
arXiv Detail & Related papers (2021-06-03T17:58:51Z) - Instabilities of Offline RL with Pre-Trained Neural Representation [127.89397629569808]
In offline reinforcement learning (RL), we seek to utilize offline data to evaluate (or learn) policies in scenarios where the data are collected from a distribution that substantially differs from that of the target policy to be evaluated.
Recent theoretical advances have shown that such sample-efficient offline RL is indeed possible provided certain strong representational conditions hold.
This work studies these issues from an empirical perspective to gauge how stable offline RL methods are.
arXiv Detail & Related papers (2021-03-08T18:06:44Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline
and Online RL [48.552287941528]
Off-policy reinforcement learning holds the promise of sample-efficient learning of decision-making policies.
In the offline RL setting, standard off-policy RL methods can significantly underperform.
We introduce Expected-Max Q-Learning (EMaQ), which is more closely related to the resulting practical algorithm.
arXiv Detail & Related papers (2020-07-21T21:13:02Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.