Tackling Long-Horizon Tasks with Model-based Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2407.00699v1
- Date: Sun, 30 Jun 2024 13:44:59 GMT
- Title: Tackling Long-Horizon Tasks with Model-based Offline Reinforcement Learning
- Authors: Kwanyoung Park, Youngwoon Lee,
- Abstract summary: We introduce a novel model-based offline RL method, Lower Expectile Q-learning (LEQ), which enhances long-horizon task performance.
Our empirical results show that LEQ significantly outperforms previous model-based offline RL methods on long-horizon tasks.
LEQ achieves performance comparable to the state-of-the-art model-based and model-free offline RL methods on the NeoRL benchmark and the D4RL MuJoCo Gym tasks.
- Score: 6.345851712811528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model-based offline reinforcement learning (RL) is a compelling approach that addresses the challenge of learning from limited, static data by generating imaginary trajectories using learned models. However, it falls short in solving long-horizon tasks due to high bias in value estimation from model rollouts. In this paper, we introduce a novel model-based offline RL method, Lower Expectile Q-learning (LEQ), which enhances long-horizon task performance by mitigating the high bias in model-based value estimation via expectile regression of $\lambda$-returns. Our empirical results show that LEQ significantly outperforms previous model-based offline RL methods on long-horizon tasks, such as the D4RL AntMaze tasks, matching or surpassing the performance of model-free approaches. Our experiments demonstrate that expectile regression, $\lambda$-returns, and critic training on offline data are all crucial for addressing long-horizon tasks. Additionally, LEQ achieves performance comparable to the state-of-the-art model-based and model-free offline RL methods on the NeoRL benchmark and the D4RL MuJoCo Gym tasks.
Related papers
- A Tractable Inference Perspective of Offline RL [36.563229330549284]
A popular paradigm for offline Reinforcement Learning (RL) tasks is to first fit the offline trajectories to a sequence model, and then prompt the model for actions that lead to high expected return.
This paper highlights that tractability, the ability to exactly and efficiently answer various probabilistic queries, plays an important role in offline RL.
We propose Trifle, which bridges the gap between good sequence models and high expected returns at evaluation time.
arXiv Detail & Related papers (2023-10-31T19:16:07Z) - Simplified Temporal Consistency Reinforcement Learning [19.814047499837084]
We show that a simple representation learning approach relying on a latent dynamics model trained by latent temporal consistency is sufficient for high-performance RL.
Our approach outperforms model-free methods by a large margin and matches model-based methods' sample efficiency while training 2.4 times faster.
arXiv Detail & Related papers (2023-06-15T19:37:43Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
We show that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system.
We also show that iteratively updating the model is of major importance to avoid biases in the RL training.
arXiv Detail & Related papers (2023-02-14T16:14:39Z) - Offline Q-Learning on Diverse Multi-Task Data Both Scales And
Generalizes [100.69714600180895]
offline Q-learning algorithms exhibit strong performance that scales with model capacity.
We train a single policy on 40 games with near-human performance using up-to 80 million parameter networks.
Compared to return-conditioned supervised approaches, offline Q-learning scales similarly with model capacity and has better performance, especially when the dataset is suboptimal.
arXiv Detail & Related papers (2022-11-28T08:56:42Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Bootstrapped Transformer for Offline Reinforcement Learning [31.43012728924881]
offline reinforcement learning (RL) aims at learning policies from previously collected static trajectory data without interacting with the real environment.
Recent works provide a novel perspective by viewing offline RL as a generic sequence generation problem.
We propose a novel algorithm named Bootstrapped Transformer, which incorporates the idea of bootstrapping and leverages the learned model to self-generate more offline data.
arXiv Detail & Related papers (2022-06-17T05:57:47Z) - Double Check Your State Before Trusting It: Confidence-Aware
Bidirectional Offline Model-Based Imagination [31.805991958408438]
We propose to augment the offline dataset by using trained bidirectional dynamics models and rollout policies with double check.
Our method, confidence-aware bidirectional offline model-based imagination, generates reliable samples and can be combined with any model-free offline RL method.
arXiv Detail & Related papers (2022-06-16T08:00:44Z) - Reinforcement Learning as One Big Sequence Modeling Problem [84.84564880157149]
Reinforcement learning (RL) is typically concerned with estimating single-step policies or single-step models.
We view RL as a sequence modeling problem, with the goal being to predict a sequence of actions that leads to a sequence of high rewards.
arXiv Detail & Related papers (2021-06-03T17:58:51Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z) - MOReL : Model-Based Offline Reinforcement Learning [49.30091375141527]
In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based solely on a dataset of historical interactions with the environment.
We present MOReL, an algorithmic framework for model-based offline RL.
We show that MOReL matches or exceeds state-of-the-art results in widely studied offline RL benchmarks.
arXiv Detail & Related papers (2020-05-12T17:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.