論文の概要: Mixture-of-Experts for Open Set Domain Adaptation: A Dual-Space Detection Approach
- arxiv url: http://arxiv.org/abs/2311.00285v2
- Date: Wed, 3 Jul 2024 10:51:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 20:33:17.012387
- Title: Mixture-of-Experts for Open Set Domain Adaptation: A Dual-Space Detection Approach
- Title(参考訳): Open Set Domain AdaptationのためのMixture-of-Experts: Dual-Space Detection Approach
- Authors: Zhenbang Du, Jiayu An, Yunlu Tu, Jiahao Hong, Dongrui Wu,
- Abstract要約: Open Set Domain Adaptation (OSDA)は、ソースとターゲットドメイン間の分散とラベルシフトに同時に対処することを目的としている。
画像特徴空間とルーティング特徴空間の不整合を利用して未知のクラスサンプルをしきい値なしで検出するDual-Space Detectionを提案する。
- 参考スコア(独自算出の注目度): 12.592374731626744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open Set Domain Adaptation (OSDA) aims to cope with the distribution and label shifts between the source and target domains simultaneously, performing accurate classification for known classes while identifying unknown class samples in the target domain. Most existing OSDA approaches, depending on the final image feature space of deep models, require manually-tuned thresholds, and may easily misclassify unknown samples as known classes. Mixture-of-Experts (MoE) could be a remedy. Within a MoE, different experts handle distinct input features, producing unique expert routing patterns for various classes in a routing feature space. As a result, unknown class samples may display different expert routing patterns to known classes. In this paper, we propose Dual-Space Detection, which exploits the inconsistencies between the image feature space and the routing feature space to detect unknown class samples without any threshold. Graph Router is further introduced to better make use of the spatial information among image patches. Experiments on three different datasets validated the effectiveness and superiority of our approach.
- Abstract(参考訳): Open Set Domain Adaptation (OSDA)は、ソースとターゲットドメイン間の分散とラベルシフトを同時に処理し、ターゲットドメイン内の未知のクラスサンプルを特定しながら、既知のクラスを正確に分類することを目的としている。
既存のOSDAアプローチのほとんどは、ディープモデルの最終的な画像特徴空間に依存し、手動で調整されたしきい値を必要とし、未知のサンプルを既知のクラスとして容易に分類する。
Mixture-of-Experts (MoE)は治療薬かもしれない。
MoE内では、異なる専門家が異なる入力機能を処理し、ルーティング機能空間内の様々なクラスの独自の専門家ルーティングパターンを生成する。
その結果、未知のクラスサンプルは、既知のクラスに対して異なる専門家のルーティングパターンを表示することができる。
本稿では,画像特徴空間とルーティング特徴空間の不整合を利用して未知のクラスサンプルをしきい値なしで検出するDual-Space Detectionを提案する。
画像パッチ間の空間情報をよりよく活用するために、グラフルータも導入された。
3つの異なるデータセットの実験は、我々のアプローチの有効性と優位性を検証した。
関連論文リスト
- EIANet: A Novel Domain Adaptation Approach to Maximize Class Distinction with Neural Collapse Principles [15.19374752514876]
ソースフリードメイン適応(SFDA)は、ラベル付きソースドメインから未ラベルのターゲットドメインに知識を転送することを目的としている。
SFDAにおける大きな課題は、ターゲットドメインの正確な分類情報を導き出すことである。
クラスプロトタイプを分離するための新しいETF-Informed Attention Network(EIANet)を導入する。
論文 参考訳(メタデータ) (2024-07-23T05:31:05Z) - Open-Set Domain Adaptation for Semantic Segmentation [6.3951361316638815]
対象ドメインが未知のクラスを含むセマンティック(OSDA-SS)を初めて導入する。
これらの問題に対処するため,BUS を作成したBundary and Unknown Shape-Aware Open-set Domain adaptationを提案する。
我々のBUSは、新しい拡張浸食に基づくコントラスト損失を用いて、未知のクラスと未知のクラスの境界を正確に識別することができる。
論文 参考訳(メタデータ) (2024-05-30T09:55:19Z) - Attention-based Class-Conditioned Alignment for Multi-Source Domain Adaptation of Object Detectors [11.616494893839757]
オブジェクト検出(OD)のドメイン適応手法は、ソースドメインとターゲットドメイン間の特徴調整を促進することによって、分散シフトの影響を軽減する。
ODのための最先端MSDA手法の多くは、クラスに依存しない方法で特徴アライメントを実行する。
ドメイン間で各オブジェクトカテゴリのインスタンスをアライメントするMSDAのための注目型クラス条件アライメント手法を提案する。
論文 参考訳(メタデータ) (2024-03-14T23:31:41Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
従来のドメイン適応手法は、ソースとターゲットドメインのクラスが同一であると仮定する。
オープンセットドメイン適応(OSDA)は、この制限に対処する。
そこで,本研究では,共通クラスと未知クラスを識別するための自己評価学習に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-10T14:11:09Z) - Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
ドメイン適応検出は、ターゲットドメイン上の検出器の一般化を改善することを目的としている。
近年のアプローチは、異なる粒度の特徴アライメントを通じて、逆学習を通じてドメイン適応を実現する。
ドメイン不変な特徴学習のための統合多重粒度アライメント(MGA)に基づく検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-01T08:38:07Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
既存のメソッドは、検証または未知のサンプルの事前定義された比率に基づいて未知のサンプルを拒否するしきい値を手動で設定します。
本稿では,ソースサンプルを用いて閾値を学習し,対象領域に適応する手法を提案する。
私たちの考えは、ソースドメインの最小クラス間距離は、ターゲットの既知のか未知かを決定するための良いしきい値であるべきです。
論文 参考訳(メタデータ) (2021-04-07T18:36:31Z) - mDALU: Multi-Source Domain Adaptation and Label Unification with Partial
Datasets [102.62639692656458]
本稿では,この課題をマルチソースドメイン適応とラベル統一の問題として扱う。
本手法は,部分教師あり適応段階と完全教師あり適応段階からなる。
本手法は,画像分類,2次元意味画像分割,ジョイント2d-3d意味セグメンテーションの3つのタスクで検証する。
論文 参考訳(メタデータ) (2020-12-15T15:58:03Z) - Adversarial Dual Distinct Classifiers for Unsupervised Domain Adaptation [67.83872616307008]
Unversarial Domain adaptation (UDA)は、異なる分散されたラベル付きソースドメインから学習モデルを構築することで、ラベルなしのターゲットサンプルを認識しようとする。
本稿では,タスク固有のカテゴリ境界に一致するソースとターゲット領域のデータ分布を同時に整合させる新しいアドリラルデュアル・ディスタンス・ネットワーク(AD$2$CN)を提案する。
具体的には、ドメイン不変の特徴発生器を利用して、識別的クロスドメインアライメントのガイダンスにより、ソースとターゲットデータを潜在共通空間に埋め込む。
論文 参考訳(メタデータ) (2020-08-27T01:29:10Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。