論文の概要: Fixation-based Self-calibration for Eye Tracking in VR Headsets
- arxiv url: http://arxiv.org/abs/2311.00391v2
- Date: Tue, 23 Apr 2024 03:31:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 19:45:27.599093
- Title: Fixation-based Self-calibration for Eye Tracking in VR Headsets
- Title(参考訳): VRヘッドセットにおけるアイトラッキングのための固定型自己校正
- Authors: Ryusei Uramune, Sei Ikeda, Hiroki Ishizuka, Osamu Oshiro,
- Abstract要約: 提案手法は,ユーザの視点が自由に動けるという仮定に基づいている。
固定は、まず、補正されていない視線方向の時系列データから検出される。
キャリブレーションパラメータは、PoRsの分散メトリクスの和を最小化することにより最適化される。
- 参考スコア(独自算出の注目度): 0.21561701531034413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a novel self-calibration method for eye tracking in a virtual reality (VR) headset. The proposed method is based on the assumptions that the user's viewpoint can freely move and that the points of regard (PoRs) from different viewpoints are distributed within a small area on an object surface during visual fixation. In the method, fixations are first detected from the time-series data of uncalibrated gaze directions using an extension of the I-VDT (velocity and dispersion threshold identification) algorithm to a three-dimensional (3D) scene. Then, the calibration parameters are optimized by minimizing the sum of a dispersion metrics of the PoRs. The proposed method can potentially identify the optimal calibration parameters representing the user-dependent offset from the optical axis to the visual axis without explicit user calibration, image processing, or marker-substitute objects. For the gaze data of 18 participants walking in two VR environments with many occlusions, the proposed method achieved an accuracy of 2.1$^\circ$, which was significantly lower than the average offset. Our method is the first self-calibration method with an average error lower than 3$^\circ$ in 3D environments. Further, the accuracy of the proposed method can be improved by up to 1.2$^\circ$ by refining the fixation detection or optimization algorithm.
- Abstract(参考訳): 本研究では,バーチャルリアリティー(VR)ヘッドセットにおける視線追跡のための新しい自己校正手法を提案する。
提案手法は,ユーザの視点が自由に移動可能であり,視点の異なる点(PoR)が視覚的固定中に対象表面上の小さな領域に分散されるという仮定に基づいている。
この方法では、まず、I-VDTアルゴリズム(速度と分散しきい値の識別)を3次元の3Dシーンに拡張して、補正されていない視線方向の時系列データから固定を検知する。
次に、PoRの分散メトリクスの和を最小化することにより、キャリブレーションパラメータを最適化する。
提案手法は,光学軸から視覚軸へのオフセットを表す最適なキャリブレーションパラメータを,明示的なユーザキャリブレーション,画像処理,マーカー置換オブジェクトなしで識別することができる。
また,2つのVR環境を多数の咬合で歩く18人の視線データについて,平均オフセットよりも有意に低い2.1$^\circ$の精度を得た。
本手法は3次元環境における平均誤差が3$^\circ$より低い最初の自己校正法である。
さらに,修正検出アルゴリズムや最適化アルゴリズムを改良することにより,提案手法の精度を1.2$^\circ$まで向上させることができる。
関連論文リスト
- P2O-Calib: Camera-LiDAR Calibration Using Point-Pair Spatial Occlusion
Relationship [1.6921147361216515]
本研究では,3次元空間における閉塞関係を用いた2次元3次元エッジポイント抽出に基づく新たなターゲットレスキャリブレーション手法を提案する。
本手法は,高画質カメラ-LiDARキャリブレーションによる実用的応用に寄与する,低誤差かつ高ロバスト性を実現する。
論文 参考訳(メタデータ) (2023-11-04T14:32:55Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
本稿では,屋外ロボットのための微細な自己局在化手法を提案する。
提案手法は,既存のクロスビューローカライゼーション手法の限界に対処する。
これは、動的環境における知覚を増強する初めての疎視のみの手法である。
論文 参考訳(メタデータ) (2023-08-16T02:51:52Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
既存の検出方法は、パラメータ化バウンディングボックス(BBox)を使用して(水平)オブジェクトをモデル化し、検出する。
このような機構は回転検出に有効な回帰損失を構築するのに基本的な限界があると主張する。
回転した物体をガウス分布としてモデル化することを提案する。
2次元から3次元へのアプローチを、方向推定を扱うアルゴリズム設計により拡張する。
論文 参考訳(メタデータ) (2022-09-22T07:50:48Z) - Camera Distortion-aware 3D Human Pose Estimation in Video with
Optimization-based Meta-Learning [23.200130129530653]
歪みのないデータセットでトレーニングされた既存の3次元ポーズ推定アルゴリズムは、特定のカメラ歪みのある新しいシナリオに適用した場合、パフォーマンス低下を被る。
本研究では, 歪み環境に迅速に適応できる簡易かつ効果的な3次元ポーズ推定モデルを提案する。
論文 参考訳(メタデータ) (2021-11-30T01:35:04Z) - SemCal: Semantic LiDAR-Camera Calibration using Neural MutualInformation
Estimator [7.478076599395811]
SemCal(セムカル)は、セマンティック情報を用いたLiDARおよびカメラシステムのための自動的、ターゲットレス、外部キャリブレーションアルゴリズムである。
本研究では,各センサ計測から抽出した意味情報の相互情報(MI)を推定するために,ニューラル情報推定器を利用する。
論文 参考訳(メタデータ) (2021-09-21T15:51:24Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) は、2D-3D特徴座標の3Dモデルに関して、高速で正確で堅牢なカメラローカライゼーションを目指している。
論文 参考訳(メタデータ) (2021-07-08T15:19:36Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Online Initialization and Extrinsic Spatial-Temporal Calibration for
Monocular Visual-Inertial Odometry [19.955414423860788]
本稿では,最適化に基づく単眼的視覚慣性眼球運動計測(VIO)のオンラインブートストラップ法を提案する。
この方法は、カメラとIMU間の相対変換(空間)と時間オフセット(時間)をオンラインに校正し、計量スケール、速度、重力、ジャイロスコープバイアス、加速度計バイアスを推定することができる。
公開データセットにおける実験結果から,初期値とパラメータ,およびセンサのポーズが,提案手法により正確に推定できることが示唆された。
論文 参考訳(メタデータ) (2020-04-12T03:13:08Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
本稿では、この局所最適問題を解くために、回転回帰のための離散連続的な新しい定式化を提案する。
我々はSO(3)の回転アンカーを均一にサンプリングし、各アンカーから目標への制約付き偏差を予測し、最適な予測を選択するための不確実性スコアを出力する。
LINEMOD と YCB-Video の2つのベンチマーク実験により,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-02-29T06:24:55Z) - A Two-step Calibration Method for Unfocused Light Field Camera Based on
Projection Model Analysis [8.959346460518226]
提案手法は,方向パラメータセットに対する従来のカメラキャリブレーション手法を再利用することができる。
提案手法の精度とロバスト性は,様々なベンチマーク基準で評価される。
論文 参考訳(メタデータ) (2020-01-11T10:37:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。