Polyander visualization of quantum walks
- URL: http://arxiv.org/abs/2311.00409v1
- Date: Wed, 1 Nov 2023 10:01:08 GMT
- Title: Polyander visualization of quantum walks
- Authors: Steven Duplij, Raimund Vogl
- Abstract summary: We investigate quantum walks which play an important role in the modelling of many phenomena.
The detailed and thorough description is given to the discrete quantum walks on a line, where the total quantum state consists of quantum states of the walker and the coin.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate quantum walks which play an important role in the modelling of
many phenomena. The detailed and thorough description is given to the discrete
quantum walks on a line, where the total quantum state consists of quantum
states of the walker and the coin. In addition to the standard walker
probability distribution, we introduce the coin probability distribution which
gives more complete quantum walk description and novel visualization in terms
of the so called polyanders (analogs of trianders in DNA visualization). The
methods of final states computation and the Fourier transform are presented for
the Hadamard quantum walk.
Related papers
- Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Phase transition of a continuous-time quantum walk on the half line [0.0]
Quantum walks are referred to as quantum analogs to random walks in mathematics.
We study a continuous-time quantum walk on the half line and challenge to find a limit theorem for it in this paper.
arXiv Detail & Related papers (2024-03-20T13:21:29Z) - Quantum walks, the discrete wave equation and Chebyshev polynomials [1.0878040851638]
A quantum walk is the quantum analogue of a random walk.
We show that quantum walks can speed up the spreading or mixing rate of random walks on graphs.
arXiv Detail & Related papers (2024-02-12T17:15:19Z) - Scouring Parrondo's Paradox in Discrete-Time Quantum Walks [0.0]
Parrondo's paradox is a phenomenon where a combination of losing strategies becomes a winning strategy.
Unlike traditional quantum steps that allow for equal magnitude forward and backward strides based on the outcome of the coin-toss, the steps employed here permit the strides to be of unequal magnitude.
arXiv Detail & Related papers (2024-01-17T05:31:02Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Quantum walks on random lattices: Diffusion, localization and the
absence of parametric quantum speed-up [0.0]
We study propagation of quantum walks on percolation-generated two-dimensional random lattices.
We show that even arbitrarily weak concentrations of randomly removed lattice sites give rise to a complete breakdown of the superdiffusive quantum speed-up.
The fragility of quantum speed-up implies dramatic limitations for quantum information applications of quantum walks on random geometries and graphs.
arXiv Detail & Related papers (2022-10-11T10:07:52Z) - One-dimensional discrete-time quantum walks with general coin [0.0]
We provide an algorithm for the one-dimensional quantum walk driven by the general coin operator.
The study conducted on general coin operator also includes the popular coins -- Hadamard, Grover, and Fourier coins.
arXiv Detail & Related papers (2021-02-14T17:42:43Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.