Assessment of Uncertainty Quantification in Universal Differential Equations
- URL: http://arxiv.org/abs/2406.08853v1
- Date: Thu, 13 Jun 2024 06:36:19 GMT
- Title: Assessment of Uncertainty Quantification in Universal Differential Equations
- Authors: Nina Schmid, David Fernandes del Pozo, Willem Waegeman, Jan Hasenauer,
- Abstract summary: Universal Differential Equations (UDEs) are used to combine prior knowledge in the form of mechanistic formulations with universal function approximators, like neural networks.
We provide a formalisation of uncertainty quantification (UQ) for UDEs and investigate important frequentist and Bayesian methods.
- Score: 1.374796982212312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific Machine Learning is a new class of approaches that integrate physical knowledge and mechanistic models with data-driven techniques for uncovering governing equations of complex processes. Among the available approaches, Universal Differential Equations (UDEs) are used to combine prior knowledge in the form of mechanistic formulations with universal function approximators, like neural networks. Integral to the efficacy of UDEs is the joint estimation of parameters within mechanistic formulations and the universal function approximators using empirical data. The robustness and applicability of resultant models, however, hinge upon the rigorous quantification of uncertainties associated with these parameters, as well as the predictive capabilities of the overall model or its constituent components. With this work, we provide a formalisation of uncertainty quantification (UQ) for UDEs and investigate important frequentist and Bayesian methods. By analysing three synthetic examples of varying complexity, we evaluate the validity and efficiency of ensembles, variational inference and Markov chain Monte Carlo sampling as epistemic UQ methods for UDEs.
Related papers
- Statistical Mechanics of Dynamical System Identification [3.1484174280822845]
We develop a statistical mechanical approach to analyze sparse equation discovery algorithms.
In this framework, statistical mechanics offers tools to analyze the interplay between complexity and fitness.
arXiv Detail & Related papers (2024-03-04T04:32:28Z) - Response Theory via Generative Score Modeling [0.0]
We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the Generalized Fluctuation-Dissipation Theorem (GFDT)
The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics.
arXiv Detail & Related papers (2024-02-01T21:38:10Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Polynomial Chaos Surrogate Construction for Random Fields with Parametric Uncertainty [0.0]
Surrogate models provide a means of circumventing the high computational expense of complex models.
We develop a PCE surrogate on a joint space of intrinsic and parametric uncertainty, enabled by Rosenblatt.
We then take advantage of closed-form solutions for computing PCE Sobol indices to perform a global sensitivity analysis of the model.
arXiv Detail & Related papers (2023-11-01T14:41:54Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Data-Driven Theory-guided Learning of Partial Differential Equations
using SimultaNeous Basis Function Approximation and Parameter Estimation
(SNAPE) [0.0]
We propose a technique of parameter estimation of partial differential equations (PDEs) that is robust against high levels of noise 100 %.
SNAPE not only demonstrates its applicability on various complex dynamic systems that encompass wide scientific domains.
The method systematically combines the knowledge of well-established scientific theories and the concepts of data science to infer the properties of the process from the observed data.
arXiv Detail & Related papers (2021-09-14T22:54:30Z) - Low-rank statistical finite elements for scalable model-data synthesis [0.8602553195689513]
statFEM acknowledges a priori model misspecification, by embedding forcing within the governing equations.
The method reconstructs the observed data-generating processes with minimal loss of information.
This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix.
arXiv Detail & Related papers (2021-09-10T09:51:43Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.