論文の概要: Flexible Tails for Normalising Flows, with Application to the Modelling
of Financial Return Data
- arxiv url: http://arxiv.org/abs/2311.00580v1
- Date: Wed, 1 Nov 2023 15:27:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 13:19:54.475277
- Title: Flexible Tails for Normalising Flows, with Application to the Modelling
of Financial Return Data
- Title(参考訳): フロー正規化のためのフレキシブルテールと金融リターンデータのモデリングへの応用
- Authors: Tennessee Hickling and Dennis Prangle
- Abstract要約: 極値理論によって動機付けられた分布のテール特性を変化させることのできる変換を提案する。
このアプローチを金融リターンのモデル化に適用し、そのようなデータに発生する潜在的に極端なショックを捉えます。
- 参考スコア(独自算出の注目度): 0.7777799208921169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a transformation capable of altering the tail properties of a
distribution, motivated by extreme value theory, which can be used as a layer
in a normalizing flow to approximate multivariate heavy tailed distributions.
We apply this approach to model financial returns, capturing potentially
extreme shocks that arise in such data. The trained models can be used directly
to generate new synthetic sets of potentially extreme returns
- Abstract(参考訳): 極値理論によって動機づけられた分布の尾部特性を変化させることが可能な変換法を提案し,多変量重尾部分布を近似するために正規化フローの層として利用することができる。
このアプローチを金融リターンのモデル化に適用し、そのようなデータに発生する潜在的に極端なショックを捉えます。
訓練されたモデルは、潜在的に極端なリターンの新しい合成集合を生成するために直接使用できる
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Normalizing Flow with Variational Latent Representation [20.038183566389794]
正規化フロー(NF)の実用性能を向上させるため,変分潜在表現に基づく新しいフレームワークを提案する。
この考え方は、標準正規潜在変数をより一般的な潜在変数に置き換えることであり、変分ベイズを通して共同で学習される。
得られた手法は,複数のモードでデータ分布を生成する標準的な正規化フローアプローチよりもはるかに強力である。
論文 参考訳(メタデータ) (2022-11-21T16:51:49Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
正規化フロー(NF)は、複雑な実世界のデータ分布を正確にモデル化することが示されているフレキシブルな明示的な生成モデルである。
摂動分布から標本を与えられた多様体上の最も可能性の高い点を復元する最適化目的を提案する。
最後に、NFsの明示的な性質、すなわち、ログのような勾配とログのような勾配から抽出された表面正規化を利用する3次元点雲に焦点を当てる。
論文 参考訳(メタデータ) (2022-08-18T16:07:59Z) - Entropy-based Characterization of Modeling Constraints [0.0]
ほとんどのデータ科学的アプローチでは、エントロピー(MaxEnt)の原理はパラメトリックモデルを正当化するために用いられる。
与えられた制約の集合を満たすすべての実効的な分布の分布を導出する。
データによって支えられる適切なパラメトリックモデルは、常にモデル選択の最後に導出することができる。
論文 参考訳(メタデータ) (2022-06-27T17:25:49Z) - Marginal Tail-Adaptive Normalizing Flows [15.732950126814089]
本稿では,尾の挙動を正確に捉えるための流れの正規化能力の向上に焦点をあてる。
自己回帰流の限界尾化性は,その基底分布の限界尾化性によって制御可能であることを証明した。
実験分析により,提案手法は,特に分布の尾部における精度を向上し,重み付きデータを生成可能であることが示された。
論文 参考訳(メタデータ) (2022-06-21T12:34:36Z) - $p$-Generalized Probit Regression and Scalable Maximum Likelihood
Estimation via Sketching and Coresets [74.37849422071206]
本稿では, 2次応答に対する一般化線形モデルである,$p$一般化プロビット回帰モデルについて検討する。
p$の一般化されたプロビット回帰に対する最大可能性推定器は、大容量データ上で$(1+varepsilon)$の係数まで効率的に近似できることを示す。
論文 参考訳(メタデータ) (2022-03-25T10:54:41Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z) - Robust model training and generalisation with Studentising flows [22.757298187704745]
本稿では、ロバストな(特に耐性のある)統計からの洞察に基づいて、これらの手法をさらに改善する方法について論じる。
本稿では, ガウス分布の簡易なドロップイン置換として, 太い尾の潜伏分布を持つフローベースモデルを提案する。
いくつかの異なるデータセットの実験により、提案手法の有効性が確認された。
論文 参考訳(メタデータ) (2020-06-11T16:47:01Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。