論文の概要: Normalizing Flow with Variational Latent Representation
- arxiv url: http://arxiv.org/abs/2211.11638v1
- Date: Mon, 21 Nov 2022 16:51:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 18:35:46.742643
- Title: Normalizing Flow with Variational Latent Representation
- Title(参考訳): 変分潜在表現を用いた正規化流れ
- Authors: Hanze Dong, Shizhe Diao, Weizhong Zhang, Tong Zhang
- Abstract要約: 正規化フロー(NF)の実用性能を向上させるため,変分潜在表現に基づく新しいフレームワークを提案する。
この考え方は、標準正規潜在変数をより一般的な潜在変数に置き換えることであり、変分ベイズを通して共同で学習される。
得られた手法は,複数のモードでデータ分布を生成する標準的な正規化フローアプローチよりもはるかに強力である。
- 参考スコア(独自算出の注目度): 20.038183566389794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flow (NF) has gained popularity over traditional maximum
likelihood based methods due to its strong capability to model complex data
distributions. However, the standard approach, which maps the observed data to
a normal distribution, has difficulty in handling data distributions with
multiple relatively isolated modes. To overcome this issue, we propose a new
framework based on variational latent representation to improve the practical
performance of NF. The idea is to replace the standard normal latent variable
with a more general latent representation, jointly learned via Variational
Bayes. For example, by taking the latent representation as a discrete sequence,
our framework can learn a Transformer model that generates the latent sequence
and an NF model that generates continuous data distribution conditioned on the
sequence. The resulting method is significantly more powerful than the standard
normalization flow approach for generating data distributions with multiple
modes. Extensive experiments have shown the advantages of NF with variational
latent representation.
- Abstract(参考訳): 正規化フロー(NF)は、複雑なデータ分布をモデル化する強力な能力のため、従来の最大値に基づく手法よりも人気がある。
しかし、観測されたデータを正規分布にマッピングする標準的なアプローチは、複数の比較的孤立したモードでデータ分布を扱うのが困難である。
そこで本研究では,NFの実用性能を向上させるために,変分潜在表現に基づく新しいフレームワークを提案する。
この考え方は、標準正規潜在変数をより一般的な潜在変数に置き換えることであり、変分ベイズを通して共同で学習される。
例えば、潜在表現を離散列として取ることで、潜在列を生成するトランスフォーマーモデルと、その列に条件付けられた連続データ分布を生成するnfモデルを学ぶことができる。
得られた手法は,複数のモードでデータ分布を生成する標準的な正規化フローアプローチよりもはるかに強力である。
広汎な実験により、変分潜在表現を持つNFの利点が示された。
関連論文リスト
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
拡散モデルは、特定のノイズを付加したテスト画像の通常の画像を再構成する傾向がある。
世界的視点から見ると、異なる異常による画像再構成の難しさは不均一である。
本稿では,非教師付き異常検出のためのグローバルかつ局所的な適応拡散モデル(GLADと略す)を提案する。
論文 参考訳(メタデータ) (2024-06-11T17:27:23Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Neural Diffusion Models [2.1779479916071067]
本稿では,データの時間依存非線形変換の定義と学習を可能にする,従来の拡散モデルの一般化について述べる。
NDMは、可能性の観点から従来の拡散モデルより優れ、高品質なサンプルを生成する。
論文 参考訳(メタデータ) (2023-10-12T13:54:55Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
深層学習の成功に基づいて、GAN(Generative Adversarial Networks)は、観測されたサンプルから確率分布を学習するための現代的なアプローチを提供する。
GANはしばしば、ジェネレータが入力分布の既存のすべてのモードをキャプチャできないモード崩壊問題に悩まされる。
情報理論のアプローチを採り、生成したサンプルのエントロピーの変動的下限を最大化し、それらの多様性を増大させる。
論文 参考訳(メタデータ) (2020-09-24T19:34:37Z) - Learning more expressive joint distributions in multimodal variational
methods [0.17188280334580194]
正規化フローを用いたマルチモーダル変分法の表現能力を向上させる手法を提案する。
このモデルは,様々なコンピュータビジョンタスクの変動推論に基づいて,最先端のマルチモーダル手法を改善することを実証する。
また, より強力な近似関節分布の学習により, 生成した試料の品質が向上することを示した。
論文 参考訳(メタデータ) (2020-09-08T11:45:27Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
ウィナー過程の微分変形によって駆動される新しいタイプの流れを提案する。
その結果,観測可能なプロセスが基本プロセスの魅力的な特性の多くを継承するリッチ時系列モデルが得られた。
論文 参考訳(メタデータ) (2020-02-24T20:13:43Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。