論文の概要: Adaptive Spatio-temporal Estimation on the Graph Edges via Line Graph Transformation
- arxiv url: http://arxiv.org/abs/2311.00656v3
- Date: Wed, 23 Oct 2024 06:53:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:51:48.527853
- Title: Adaptive Spatio-temporal Estimation on the Graph Edges via Line Graph Transformation
- Title(参考訳): 線グラフ変換によるグラフエッジの適応時空間推定
- Authors: Yi Yan, Ercan Engin Kuruoglu,
- Abstract要約: 線形グラフ変換を利用したLGLMS (Line Graph Least Mean Square) アルゴリズムを提案する。
LGLMSは古典的なLMSアルゴリズムに類似した適応アルゴリズムであるが、グラフエッジに適用される。
- 参考スコア(独自算出の注目度): 3.6448362316632115
- License:
- Abstract: Spatio-temporal estimation of signals on graph edges is challenging because most conventional Graph Signal Processing techniques are defined on the graph nodes. Leveraging the Line Graph transform, the Line Graph Least Mean Square (LGLMS) algorithm is proposed to conduct adaptive estimation of time-varying edge signals by projecting the edge signals from edge space to node space. LGLMS is an adaptive algorithm analogous to the classical LMS algorithm but applied to graph edges. Unlike edge-specific methods, LGLMS retains all GSP concepts and techniques originally designed for graph nodes, without the need for redefinition on the edges. Experimenting with transportation graphs and meteorological graphs, with the signal observations having noisy and missing values, we confirmed that LGLMS is suitable for the online prediction of time-varying edge signals.
- Abstract(参考訳): グラフノード上で従来のグラフ信号処理技術が定義されているため,グラフエッジ上の信号の時空間推定は困難である。
線形グラフ変換を応用したLGLMSアルゴリズムを提案し,エッジ信号をエッジ空間からノード空間に投影することにより,時間変化エッジ信号の適応的推定を行う。
LGLMSは古典的なLMSアルゴリズムに類似した適応アルゴリズムであるが、グラフエッジに適用される。
エッジ固有の方法とは異なり、LGLMSはもともとグラフノード用に設計されたすべてのGSP概念と技法を保持しており、エッジの再定義は不要である。
観測結果から,LGLMSは時間変動エッジ信号のオンライン予測に適していることが確認された。
関連論文リスト
- Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
グラフニューラルネットワーク(GNN)は、従来、非指向グラフ上の拡散に似たメッセージパッシング機構を採用している。
私たちのキーとなる洞察は、ファジィエッジ方向をグラフのエッジに割り当てることです。
ファジィエッジを持つグラフを学習するためのフレームワークとして,Continuous Edge Direction (CoED) GNNを提案する。
論文 参考訳(メタデータ) (2024-10-18T01:34:35Z) - Online Proximal ADMM for Graph Learning from Streaming Smooth Signals [9.34612743192798]
我々は,潜伏グラフ上でスムーズな観測ストリームを用いたオンライングラフ学習のための新しいアルゴリズムを開発した。
我々のモダス・オペランは、グラフ信号を逐次処理し、メモリと計算コストを抑えることです。
提案手法は,現在最先端のオンライングラフ学習ベースラインと比較して,(準最適性の観点から)追跡性能が向上することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:12:03Z) - ADEdgeDrop: Adversarial Edge Dropping for Robust Graph Neural Networks [53.41164429486268]
グラフニューラルネットワーク(GNN)は、近隣ノードからグラフ構造化情報を収集する強力な能力を示した。
GNNの性能は、ノイズや冗長なグラフデータによって引き起こされる一般化の貧弱さと脆弱な堅牢性によって制限される。
本稿では,エッジの除去を誘導する対向エッジ予測器を利用する新しい対向エッジドロップ法 (ADEdgeDrop) を提案する。
論文 参考訳(メタデータ) (2024-03-14T08:31:39Z) - Graph Normalized-LMP Algorithm for Signal Estimation Under Impulsive
Noise [1.1279808969568252]
グラフ信号処理(GSP)のための適応グラフ正規化最小pthパワー(GNLMP)アルゴリズムを提案する。
GNLMPアルゴリズムは、ガウス雑音によって破損したグラフ信号を重み付き特性で再構成する能力を有する。
安定状態および時間変化グラフ信号の推定におけるGNLMPアルゴリズムの性能は,GLMPよりも高速で,GLMSやGNLMSと比較して頑健であることを示す。
論文 参考訳(メタデータ) (2022-03-01T09:50:43Z) - Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
Representation Learning [3.7875603451557063]
グラフ表現学習(GRL)は、現代のグラフデータマイニングおよび学習タスクに欠かせないものとなっている。
グラフニューラルネットワーク(GNN)は最先端のGRLアーキテクチャで使用されているが、過度なスムース化に悩まされていることが示されている。
本稿では,グラフの構造を考慮に入れたスペクトル法であるPointSpectrumを提案する。
論文 参考訳(メタデータ) (2021-09-06T10:59:11Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z) - Training Robust Graph Neural Networks with Topology Adaptive Edge
Dropping [116.26579152942162]
グラフニューラルネットワーク(GNN)は、グラフ構造情報を利用してネットワークデータから表現をモデル化する処理アーキテクチャである。
彼らの成功にもかかわらず、GNNは限られた訓練データから得られる準最適一般化性能に悩まされている。
本稿では、一般化性能を改善し、堅牢なGNNモデルを学習するためのトポロジ適応エッジドロップ法を提案する。
論文 参考訳(メタデータ) (2021-06-05T13:20:36Z) - Offline detection of change-points in the mean for stationary graph
signals [55.98760097296213]
グラフ信号定常性の概念に依存するオフライン手法を提案する。
我々の検出器は、漸近的でない不等式オラクルの証拠を伴っている。
論文 参考訳(メタデータ) (2020-06-18T15:51:38Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
グラフニューラルネットワーク(GNN)は、グラフによってモデル化された不規則構造上の信号の処理を含む様々なアプリケーションで効果的に使用されている。
本稿では,グラフのスペクトル特性を保存したグラフオンを用いて,GNNのプールとサンプリングを行う新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-03T21:04:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。