論文の概要: Online Proximal ADMM for Graph Learning from Streaming Smooth Signals
- arxiv url: http://arxiv.org/abs/2409.12916v1
- Date: Thu, 19 Sep 2024 17:12:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 12:59:09.644589
- Title: Online Proximal ADMM for Graph Learning from Streaming Smooth Signals
- Title(参考訳): ストリームスムース信号からのグラフ学習のためのオンライン近似ADMM
- Authors: Hector Chahuara, Gonzalo Mateos,
- Abstract要約: 我々は,潜伏グラフ上でスムーズな観測ストリームを用いたオンライングラフ学習のための新しいアルゴリズムを開発した。
我々のモダス・オペランは、グラフ信号を逐次処理し、メモリと計算コストを抑えることです。
提案手法は,現在最先端のオンライングラフ学習ベースラインと比較して,(準最適性の観点から)追跡性能が向上することを示す。
- 参考スコア(独自算出の注目度): 9.34612743192798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph signal processing deals with algorithms and signal representations that leverage graph structures for multivariate data analysis. Often said graph topology is not readily available and may be time-varying, hence (dynamic) graph structure learning from nodal (e.g., sensor) observations becomes a critical first step. In this paper, we develop a novel algorithm for online graph learning using observation streams, assumed to be smooth on the latent graph. Unlike batch algorithms for topology identification from smooth signals, our modus operandi is to process graph signals sequentially and thus keep memory and computational costs in check. To solve the resulting smoothness-regularized, time-varying inverse problem, we develop online and lightweight iterations built upon the proximal variant of the alternating direction method of multipliers (ADMM), well known for its fast convergence in batch settings. The proximal term in the topology updates seamlessly implements a temporal-variation regularization, and we argue the online procedure exhibits sublinear static regret under some simplifying assumptions. Reproducible experiments with synthetic and real graphs demonstrate the effectiveness of our method in adapting to streaming signals and tracking slowly-varying network connectivity. The proposed approach also exhibits better tracking performance (in terms of suboptimality), when compared to state-of-the-art online graph learning baselines.
- Abstract(参考訳): グラフ信号処理は、多変量データ解析にグラフ構造を利用するアルゴリズムと信号表現を扱う。
このようなグラフトポロジーは容易には利用できないことが多く、時間的変化があるため、(ダイナミックな)グラフ構造をノダル(例えばセンサ)の観測から学ぶことは重要な第一歩となる。
本稿では,潜在グラフ上でスムーズであると考えられる観測ストリームを用いたオンライングラフ学習のための新しいアルゴリズムを開発する。
滑らかな信号からトポロジを識別するためのバッチアルゴリズムとは異なり、当社のModus Operandiはグラフ信号を逐次処理し、メモリと計算コストを抑える。
結果として生じる滑らかで規則化された時間変化の逆問題を解決するために、バッチ設定における高速収束でよく知られている乗算器の交互方向法(ADMM)の近位変分に基づくオンラインおよび軽量な反復法を開発した。
トポロジ更新における近位項は時間変分正規化をシームレスに実装し、オンライン手続きはいくつかの単純化された仮定の下で、サブ線形な静的な後悔を示すと論じる。
合成および実グラフを用いた再現可能な実験は、ストリーミング信号に適応し、ゆっくりと変化するネットワーク接続を追跡する方法の有効性を示す。
提案手法は,現在最先端のオンライングラフ学習ベースラインと比較して,(準最適性の観点から)追跡性能が向上することを示す。
関連論文リスト
- Online Graph Learning via Time-Vertex Adaptive Filters: From Theory to Cardiac Fibrillation [37.69303106863453]
グラフシフト演算子(GSO)の適応推定のためのオンラインアルゴリズムであるAdaCGPを導入する。
シミュレーションにより、AdaCGPは様々なグラフトポロジに対して一貫して良好に機能し、GSO推定において82%以上の改善が達成されることを示す。
AdaCGPのグラフ構造の変化を追跡する能力は、抗不整脈薬による心室細動動態の記録に示されている。
論文 参考訳(メタデータ) (2024-11-03T13:43:51Z) - Online Learning Of Expanding Graphs [14.952056744888916]
本稿では,信号ストリームからグラフを拡張するためのオンラインネットワーク推論の問題に対処する。
ネットワークに加入したばかりのノードや,それまでのノードに対して,さまざまなタイプの更新を可能にする戦略を導入する。
論文 参考訳(メタデータ) (2024-09-13T09:20:42Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
大規模ネットワークにおける最適なソース配置をオンラインで学習するためのグラフカーネルマルチアームバンディットアルゴリズムであるGrab-UCBを提案する。
適応グラフ辞書モデルを用いて,ネットワークプロセスを記述する。
我々は、ネットワークパラメータに依存する性能保証を導出し、シーケンシャルな意思決定戦略の学習曲線にさらに影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-07T15:03:42Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
グラフ信号処理は、センサー、社会交通脳ネットワーク、ポイントクラウド処理、グラフネットワークなど、多くのアプリケーションにおいてユビキタスなタスクである。
凸非依存型深部ADMM(ADMM)に基づく2つの復元手法を提案する。
提案手法のパラメータはエンドツーエンドでトレーニング可能である。
論文 参考訳(メタデータ) (2021-06-30T08:57:01Z) - Online Graph Learning under Smoothness Priors [8.826181951806928]
探索グラフ上でスムーズなストリーミング観測を前提として,オンラインネットワークトポロジ推論のための新しいアルゴリズムを開発した。
私たちの目標は、グラフ信号を順次処理することで、メモリと計算コストを維持しながら(おそらく)時間変化のネットワークトポロジを追跡することです。
合成市場と実際の金融市場データの両方を用いたコンピュータシミュレーションは,提案アルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2021-03-05T15:42:53Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
本稿では,従来のグラフ信号フィルタリングと深い特徴学習を併用して,競合するハイブリッド設計を提案する。
解釈可能な低パスグラフフィルタを用い、最先端のDL復調方式DnCNNよりも80%少ないネットワークパラメータを用いる。
論文 参考訳(メタデータ) (2020-10-21T20:04:22Z) - Active Learning on Attributed Graphs via Graph Cognizant Logistic
Regression and Preemptive Query Generation [37.742218733235084]
本稿では,属性グラフにおけるノード分類処理のための新しいグラフベース能動学習アルゴリズムを提案する。
提案アルゴリズムは,線形化グラフ畳み込みニューラルネットワーク(GCN)と等価なグラフ認識ロジスティック回帰を用いて,予測フェーズの誤差低減を最大化する。
5つの公開ベンチマークデータセットで実験を行い、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-07-09T18:00:53Z) - Time-varying Graph Representation Learning via Higher-Order Skip-Gram
with Negative Sampling [0.456877715768796]
我々は,スキップグラム埋め込み手法が行列分解を暗黙的に行うという事実に基づいて構築する。
負のサンプリングを持つ高次スキップグラムは、ノードと時間の役割を乱すことができることを示す。
提案手法を時間分解型対面近接データを用いて実証的に評価し,学習した時間変化グラフ表現が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-06-25T12:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。