Accelerating Electronic Stopping Power Predictions by 10 Million Times with a Combination of Time-Dependent Density Functional Theory and Machine Learning
- URL: http://arxiv.org/abs/2311.00787v2
- Date: Tue, 25 Jun 2024 13:09:23 GMT
- Title: Accelerating Electronic Stopping Power Predictions by 10 Million Times with a Combination of Time-Dependent Density Functional Theory and Machine Learning
- Authors: Logan Ward, Ben Blaiszik, Cheng-Wei Lee, Troy Martin, Ian Foster, André Schleife,
- Abstract summary: Knowing the rate at which particle radiation releases energy in a material is key to designing nuclear reactors, medical treatments, semiconductor and quantum materials.
We establish a method that combines time-dependent density functional theory and machine learning to reduce the time to assess new materials to mere hours on a supercomputer.
Our approach uses TDDFT to compute the electronic stopping contributions to stopping power from first principles in several directions and then machine learning to interpolate to other directions at a cost of 10 million times fewer core-hours.
- Score: 1.0327148933896368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowing the rate at which particle radiation releases energy in a material, the stopping power, is key to designing nuclear reactors, medical treatments, semiconductor and quantum materials, and many other technologies. While the nuclear contribution to stopping power, i.e., elastic scattering between atoms, is well understood in the literature, the route for gathering data on the electronic contribution has for decades remained costly and reliant on many simplifying assumptions, including that materials are isotropic. We establish a method that combines time-dependent density functional theory (TDDFT) and machine learning to reduce the time to assess new materials to mere hours on a supercomputer and provides valuable data on how atomic details influence electronic stopping. Our approach uses TDDFT to compute the electronic stopping contributions to stopping power from first principles in several directions and then machine learning to interpolate to other directions at a cost of 10 million times fewer core-hours. We demonstrate the combined approach in a study of proton irradiation in aluminum and employ it to predict how the depth of maximum energy deposition, the "Bragg Peak," varies depending on incident angle -- a quantity otherwise inaccessible to modelers. The lack of any experimental information requirement makes our method applicable to most materials, and its speed makes it a prime candidate for enabling quantum-to-continuum models of radiation damage. The prospect of reusing valuable TDDFT data for training the model make our approach appealing for applications in the age of materials data science.
Related papers
- Accelerating Electron Dynamics Simulations through Machine Learned Time Propagators [0.9208007322096533]
We present a novel approach to accelerate real time TDDFT based electron dynamics simulations.
By leveraging physics-informed constraints and high-resolution training data, our model achieves superior accuracy and computational speed.
This method has potential in enabling real-time, on-the-fly modeling of laser-irradiated molecules and materials.
arXiv Detail & Related papers (2024-07-12T18:29:48Z) - Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Transfer learning for chemically accurate interatomic neural network
potentials [0.0]
We show that pre-training the network parameters on data obtained from density functional calculations improves the sample efficiency of models trained on more accurate ab-initio data.
We provide GM-NN potentials pre-trained and fine-tuned on the ANI-1x and ANI-1ccx data sets, which can easily be fine-tuned on and applied to organic molecules.
arXiv Detail & Related papers (2022-12-07T19:21:01Z) - Learning the Physics of Particle Transport via Transformers [0.0]
We present a data-driven dose calculation algorithm predicting the dose deposited by mono-energetic proton beams.
Our proposed model is 33 times faster than current clinical analytic pencil beam algorithms.
Our model could overcome a major obstacle that has so far prohibited real-time adaptive proton treatments.
arXiv Detail & Related papers (2021-09-08T22:26:03Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - SE(3)-equivariant prediction of molecular wavefunctions and electronic
densities [4.2572103161049055]
We introduce general SE(3)-equivariant operations and building blocks for constructing deep learning architectures for geometric point cloud data.
Our model reduces prediction errors by up to two orders of magnitude compared to the previous state-of-the-art.
We demonstrate the potential of our approach in a transfer learning application, where a model trained on low accuracy reference wavefunctions implicitly learns to correct for electronic many-body interactions.
arXiv Detail & Related papers (2021-06-04T08:57:46Z) - Electronic decay process spectra including nuclear degrees of freedom [49.1574468325115]
We explore the ultra-rapid electronic motion spanning attoseconds to femtoseconds, demonstrating that it is equally integral and relevant to the discipline.
The advent of ultrashort attosecond pulse technology has revolutionized our ability to directly observe electronic rearrangements in atoms and molecules.
arXiv Detail & Related papers (2021-02-10T16:51:48Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.