論文の概要: Inclusiveness Matters: A Large-Scale Analysis of User Feedback
- arxiv url: http://arxiv.org/abs/2311.00984v1
- Date: Thu, 2 Nov 2023 04:05:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 14:51:51.357451
- Title: Inclusiveness Matters: A Large-Scale Analysis of User Feedback
- Title(参考訳): 包括性の問題: ユーザフィードバックの大規模分析
- Authors: Nowshin Nawar Arony, Ze Shi Li, Bowen Xu and Daniela Damian
- Abstract要約: Reddit、Google Play Store、Twitterの3つの人気オンラインソースからのユーザーフィードバックを、世界で最も人気のあるアプリ50に活用しています。
社会・技術基盤理論のアプローチを用いて,3つの情報源にまたがる23,107の投稿を分析し,1,211の包括性関連投稿を同定した。
本研究は、最も人気のあるアプリやオンラインソースからの包括性に関するユーザフィードバックを詳細に分析する。
- 参考スコア(独自算出の注目度): 7.8788463395442045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In an era of rapidly expanding software usage, catering to the diverse needs
of users from various backgrounds has become a critical challenge.
Inclusiveness, representing a core human value, is frequently overlooked during
software development, leading to user dissatisfaction. Users often engage in
discourse on online platforms where they indicate their concerns. In this
study, we leverage user feedback from three popular online sources, Reddit,
Google Play Store, and Twitter, for 50 of the most popular apps in the world to
reveal the inclusiveness-related concerns from end users. Using a
Socio-Technical Grounded Theory approach, we analyzed 23,107 posts across the
three sources and identified 1,211 inclusiveness related posts. We organize our
empirical results in a taxonomy for inclusiveness comprising 6 major
categories: Fairness, Technology, Privacy, Demography, Usability, and Other
Human Values. To explore automated support to identifying inclusiveness-related
posts, we experimented with five state-of-the-art pre-trained large language
models (LLMs) and found that these models' effectiveness is high and yet varied
depending on the data source. GPT-2 performed best on Reddit, BERT on the
Google Play Store, and BART on Twitter. Our study provides an in-depth view of
inclusiveness-related user feedback from most popular apps and online sources.
We provide implications and recommendations that can be used to bridge the gap
between user expectations and software so that software developers can resonate
with the varied and evolving needs of the wide spectrum of users.
- Abstract(参考訳): ソフトウェアの利用が急速に拡大する中、さまざまなバックグラウンドを持つユーザの多様なニーズに対応することが重要な課題となっている。
核となる人間的価値を表す包括性は、ソフトウェア開発中にしばしば見過ごされ、ユーザの不満に繋がる。
ユーザーは自分の懸念を示すオンラインプラットフォームで会話をすることが多い。
本研究では、Reddit、Google Play Store、Twitterの3つの人気オンラインソースからのユーザーフィードバックを、世界で最も人気のあるアプリ50に活用し、エンドユーザーからの包括性に関連する懸念を明らかにする。
社会工学的接地理論を用いて,3つの情報源にわたる23,107の投稿を分析し,1,211の包括性関連ポストを同定した。
我々は,公平性,技術,プライバシ,デモグラフィ,ユーザビリティ,その他の人間的価値の6つの主要なカテゴリからなる包括性に関する分類法で経験的な結果を整理した。
包括性に関連するポストを識別する自動サポートを探索するため、5つの最先端の事前訓練された大規模言語モデル(LLM)を実験したところ、これらのモデルの有効性はデータソースによって高く、変化していることがわかった。
GPT-2はReddit、BERTはGoogle Play Store、BARTはTwitterで最高だった。
本研究は、最も人気のあるアプリやオンラインソースからの包括性に関するユーザフィードバックを詳細に分析する。
私たちは、ユーザ期待とソフトウェアの間のギャップを埋めるために使用できる意味と推奨を提供し、ソフトウェア開発者が幅広いユーザのニーズの多様性と進化に共鳴できるようにします。
関連論文リスト
- SADAS: A Dialogue Assistant System Towards Remediating Norm Violations
in Bilingual Socio-Cultural Conversations [56.31816995795216]
SADAS(Socially-Aware Dialogue Assistant System)は、会話が敬意と理解で広がることを保証するためのシステムである。
本システムの新しいアーキテクチャは,(1)対話に存在する規範のカテゴリを特定すること,(2)潜在的な規範違反を検出すること,(3)違反の深刻さを評価すること,(4)違反の是正を目的とした対策を実施すること,を含む。
論文 参考訳(メタデータ) (2024-01-29T08:54:21Z) - Knowledge-Augmented Large Language Models for Personalized Contextual
Query Suggestion [16.563311988191636]
我々は,Web上での検索と閲覧活動に基づいて,各ユーザを対象としたエンティティ中心の知識ストアを構築した。
この知識ストアは、公的な知識グラフ上の興味と知識のユーザ固有の集約予測のみを生成するため、軽量である。
論文 参考訳(メタデータ) (2023-11-10T01:18:47Z) - UltraFeedback: Boosting Language Models with Scaled AI Feedback [99.4633351133207]
大規模で高品質で多様なAIフィードバックデータセットである textscUltraFeedback を提示する。
我々の研究は、強力なオープンソースのチャット言語モデルを構築する上で、スケールしたAIフィードバックデータの有効性を検証する。
論文 参考訳(メタデータ) (2023-10-02T17:40:01Z) - Proactive Prioritization of App Issues via Contrastive Learning [2.6763498831034043]
本稿では,アプリの問題を積極的に優先順位付けする新しいフレームワークPPriorを提案する。
PPriorはトレーニング済みのT5モデルを採用し、3段階で動作する。
フェーズ1は、事前訓練されたT5モデルを、セルフ教師された方法でユーザレビューデータに適用する。
第2フェーズでは、コントラストトレーニングを活用して、ユーザレビューの汎用的かつタスクに依存しない表現を学習する。
論文 参考訳(メタデータ) (2023-03-12T06:23:10Z) - Identifying Experts in Question & Answer Portals: A Case Study on Data
Science Competencies in Reddit [0.0]
Redditにおけるデータサイエンスの専門家の特定の可能性について検討する。
本手法は,2人のデータサイエンス専門家が専門家と専門家以外のコメントだけでなく,スコープ外コメントをラベル付けした手作業によるコーディング結果に基づいている。
我々は,1,113のラベル付きコメントと100,226の未ラベル付きコメントを組み合わせた半教師付きアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-08T14:30:59Z) - The Challenge of Understanding What Users Want: Inconsistent Preferences
and Engagement Optimization [2.690930520747925]
我々は、ユーザーが不整合な嗜好を持つメディア消費のモデルを開発する。
本稿では,ユーザの嗜好不整合モデルが日常体験に慣れ親しんだ現象をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2022-02-23T20:45:31Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
ソーシャルメディアにおけるピア間の信頼関係を予測するためのアプローチを提案する。
本稿では,データ駆動型多面信頼モデルを提案する。
信頼を意識したアイテムレコメンデーションタスクで説明され、提案したフレームワークを大規模なYelpデータセットのコンテキストで評価する。
論文 参考訳(メタデータ) (2021-11-11T19:40:51Z) - Advances and Challenges in Conversational Recommender Systems: A Survey [133.93908165922804]
現在の会話レコメンダーシステム(CRS)で使用されるテクニックの体系的なレビューを提供します。
CRS開発の主な課題を5つの方向にまとめます。
これらの研究の方向性は、情報検索(IR)、自然言語処理(NLP)、人間とコンピュータの相互作用(HCI)などの複数の研究分野を含みます。
論文 参考訳(メタデータ) (2021-01-23T08:53:15Z) - Emerging App Issue Identification via Online Joint Sentiment-Topic
Tracing [66.57888248681303]
本稿では,MERITという新しい問題検出手法を提案する。
AOBSTモデルに基づいて、1つのアプリバージョンに対するユーザレビューに否定的に反映されたトピックを推測する。
Google PlayやAppleのApp Storeで人気のアプリに対する実験は、MERITの有効性を実証している。
論文 参考訳(メタデータ) (2020-08-23T06:34:05Z) - Topic Modeling on User Stories using Word Mover's Distance [4.378337862197529]
本稿では,クラウド生成ユーザストーリーの集合内のトピックを識別する手段として,トピックモデリングに焦点を当てる。
群衆労働者による2,966件のユーザストーリーを公開して評価した。
論文 参考訳(メタデータ) (2020-07-10T11:05:42Z) - Study of the usability of LinkedIn: a social media platform meant to
connect employers and employees [91.3755431537592]
本稿では,LinkedInのユーザビリティをユーザ評価と専門家評価の両方を用いて評価する。
LinkedInアプリケーションの全体的なユーザビリティは、SUS(System Usability Scale)を使用して測定されている。
論文 参考訳(メタデータ) (2020-06-06T18:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。