論文の概要: Learn to Refuse: Making Large Language Models More Controllable and Reliable through Knowledge Scope Limitation and Refusal Mechanism
- arxiv url: http://arxiv.org/abs/2311.01041v2
- Date: Tue, 16 Apr 2024 06:24:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 01:50:05.243690
- Title: Learn to Refuse: Making Large Language Models More Controllable and Reliable through Knowledge Scope Limitation and Refusal Mechanism
- Title(参考訳): 再利用を学ぶ:知識スコープの制限と拒否メカニズムを通じて、大規模言語モデルをより制御可能で信頼性の高いものにする
- Authors: Lang Cao,
- Abstract要約: 大規模言語モデル(LLM)は印象的な言語理解と生成能力を示している。
これらのモデルは欠陥がなく、しばしばエラーや誤報を含む応答を生成する。
本稿では,LLMに対して,誤りを避けるために,難解な質問への回答を拒否するように指示する拒絶機構を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated impressive language understanding and generation capabilities, enabling them to answer a wide range of questions across various domains. However, these models are not flawless and often produce responses that contain errors or misinformation. These inaccuracies, commonly referred to as hallucinations, render LLMs unreliable and even unusable in many scenarios. In this paper, our focus is on mitigating the issue of hallucination in LLMs, particularly in the context of question-answering. Instead of attempting to answer all questions, we explore a refusal mechanism that instructs LLMs to refuse to answer challenging questions in order to avoid errors. We then propose a simple yet effective solution called Learn to Refuse (L2R), which incorporates the refusal mechanism to enable LLMs to recognize and refuse to answer questions that they find difficult to address. To achieve this, we utilize a structured knowledge base to represent all the LLM's understanding of the world, enabling it to provide traceable gold knowledge. This knowledge base is separate from the LLM and initially empty. It can be filled with validated knowledge and progressively expanded. When an LLM encounters questions outside its domain, the system recognizes its knowledge scope and determines whether it can answer the question independently. Additionally, we introduce a method for automatically and efficiently expanding the knowledge base of LLMs. Through qualitative and quantitative analysis, we demonstrate that our approach enhances the controllability and reliability of LLMs.
- Abstract(参考訳): 大きな言語モデル(LLM)は印象的な言語理解と生成能力を示し、様々な領域にわたる幅広い質問に答えることを可能にする。
しかし、これらのモデルは欠陥がなく、しばしばエラーや誤報を含む応答を生成する。
これらの不正確さは、一般に幻覚と呼ばれ、多くのシナリオでLLMを信頼できない、さらには使用できないようにしている。
本稿では,LLMにおける幻覚の問題を,特に質問応答の文脈において緩和することに焦点を当てる。
全ての質問に答える代わりに、私たちはLLMにエラーを避けるために難しい質問に答えることを拒否するように指示する拒絶メカニズムを探求する。
そこで我々は,L2R(Learning to Refuse)と呼ばれるシンプルで効果的な解を提案する。
これを実現するため、構造化知識ベースを用いてLLMの世界のすべての理解を表現し、追跡可能な金の知識を提供する。
この知識基盤はLLMとは分離されており、当初は空だった。
検証済みの知識で満たされ、徐々に拡張される。
LLMがドメイン外の質問に遭遇すると、システムはその知識の範囲を認識し、その質問に答えられるかどうかを判断する。
さらに,LLMの知識ベースを自動的かつ効率的に拡張する手法を提案する。
定性的かつ定量的な分析により,LLMの可制御性と信頼性が向上することが実証された。
関連論文リスト
- Are LLMs Aware that Some Questions are not Open-ended? [58.93124686141781]
大規模言語モデルでは、いくつかの質問が限定的な回答を持ち、より決定論的に答える必要があることを認識しているかどうかを調査する。
LLMにおける疑問認識の欠如は,(1)非オープンな質問に答えるにはカジュアルすぎる,(2)オープンな質問に答えるには退屈すぎる,という2つの現象をもたらす。
論文 参考訳(メタデータ) (2024-10-01T06:07:00Z) - Teaching Large Language Models to Express Knowledge Boundary from Their Own Signals [53.273592543786705]
大規模言語モデル (LLM) は大きな成功を収めたが、時折そのコンテンツ作成(幻覚)は実用的応用を制限している。
本稿では,まず内部信頼度を用いてLLMの知識境界を探索し,探索結果を利用して知識境界の表現を抽出するCoKEを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:07:20Z) - LLM-Generated Black-box Explanations Can Be Adversarially Helpful [16.49758711633611]
大規模言語モデル(LLM)は,デジタルアシスタントとして機能することで,複雑な問題の解決と理解を支援する。
私たちの研究は、このアプローチに結びついている隠れたリスクを明らかにします。
LLMの説明が間違った答えを正しく見せると、これは起こります。
論文 参考訳(メタデータ) (2024-05-10T20:23:46Z) - Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models [51.72963030032491]
大規模言語モデル(LLM)の知識文書は、時代遅れや誤った知識のためにLLMの記憶と矛盾する可能性がある。
我々は,知識紛争解決のための新しいデータセットKNOTを構築した。
論文 参考訳(メタデータ) (2024-04-04T16:40:11Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method [36.24876571343749]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて大きな可能性を示している。
近年の文献では、LLMは断続的に非実効応答を生成する。
本研究では,LLM が知らない質問が非現実的な結果を生成する傾向にあることを検知する新たな自己検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-27T06:22:14Z) - Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs [19.0797968186656]
大規模言語モデル(LLM)は汎用的であり、その創発的能力と一般化性のために異なるタスクを解くことができる。
以前の研究では、グラフニューラルネットワーク(GNN)のような追加モジュールは、外部の知識ベースから取得した知識に基づいて訓練されている。
論文 参考訳(メタデータ) (2023-09-06T15:55:01Z) - Investigating the Factual Knowledge Boundary of Large Language Models
with Retrieval Augmentation [91.30946119104111]
大規模言語モデル(LLM)は,質問に応答する能力に対して,波及しない自信を持っていることを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
また, LLM は, 回答の定式化に際し, 提案した検索結果に依存する傾向が認められた。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。