ADAPT-QSCI: Adaptive Construction of Input State for Quantum-Selected
Configuration Interaction
- URL: http://arxiv.org/abs/2311.01105v1
- Date: Thu, 2 Nov 2023 09:15:50 GMT
- Title: ADAPT-QSCI: Adaptive Construction of Input State for Quantum-Selected
Configuration Interaction
- Authors: Yuya O. Nakagawa, Masahiko Kamoshita, Wataru Mizukami, Shotaro Sudo,
and Yu-ya Ohnishi
- Abstract summary: We present a quantum-classical hybrid algorithm for calculating the ground state and its energy of the quantum many-body Hamiltonian.
We numerically illustrate that our method, dubbed textitADAPT-QSCI, can yield accurate ground-state energies for small molecules.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a quantum-classical hybrid algorithm for calculating the ground
state and its energy of the quantum many-body Hamiltonian by proposing an
adaptive construction of a quantum state for the quantum-selected configuration
interaction (QSCI) method. QSCI allows us to select important electronic
configurations in the system to perform CI calculation (subspace
diagonalization of the Hamiltonian) by sampling measurement for a proper input
quantum state on a quantum computer, but how we prepare a desirable input state
has remained a challenge. We propose an adaptive construction of the input
state for QSCI in which we run QSCI repeatedly to grow the input state
iteratively. We numerically illustrate that our method, dubbed
\textit{ADAPT-QSCI}, can yield accurate ground-state energies for small
molecules, including a noisy situation for eight qubits where error rates of
two-qubit gates and the measurement are both as large as 1\%. ADAPT-QSCI serves
as a promising method to take advantage of current noisy quantum devices and
pushes forward its application to quantum chemistry.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum computation of conical intersections on a programmable superconducting quantum processor [10.064448021157139]
Conical intersections (CIs) are pivotal in many photochemical processes.
We present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent method.
arXiv Detail & Related papers (2024-02-20T04:12:40Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Natural parameterized quantum circuit [0.0]
We introduce the natural parameterized quantum circuit (NPQC) that can be initialised with a Euclidean quantum geometry.
For a general class of quantum circuits, the NPQC has the minimal quantum Cram'er-Rao bound.
Our results can be used to enhance currently available quantum processors.
arXiv Detail & Related papers (2021-07-29T14:54:04Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.