Quantum computation of conical intersections on a programmable superconducting quantum processor
- URL: http://arxiv.org/abs/2402.12708v2
- Date: Fri, 28 Jun 2024 03:02:07 GMT
- Title: Quantum computation of conical intersections on a programmable superconducting quantum processor
- Authors: Shoukuan Zhao, Diandong Tang, Xiaoxiao Xiao, Ruixia Wang, Qiming Sun, Zhen Chen, Xiaoxia Cai, Zhendong Li, Haifeng Yu, Wei-Hai Fang,
- Abstract summary: Conical intersections (CIs) are pivotal in many photochemical processes.
We present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent method.
- Score: 10.064448021157139
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conical intersections (CIs) are pivotal in many photochemical processes. Traditional quantum chemistry methods, such as the state-average multi-configurational methods, face computational hurdles in solving the electronic Schr\"odinger equation within the active space on classical computers. While quantum computing offers a potential solution, its feasibility in studying CIs, particularly on real quantum hardware, remains largely unexplored. Here, we present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent field method based on the variational quantum eigensolver (VQE-SA-CASSCF) on a superconducting quantum processor. This approach is applied to investigate CIs in two prototypical systems - ethylene (C2H4) and triatomic hydrogen (H3). We illustrate that VQE-SA-CASSCF, coupled with ongoing hardware and algorithmic enhancements, can lead to a correct description of CIs on existing quantum devices. These results lay the groundwork for exploring the potential of quantum computing to study CIs in more complex systems in the future.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Universal quantum computation using quantum annealing with the
transverse-field Ising Hamiltonian [0.0]
We present a practical method for implementing universal quantum computation using the transverse-field Ising Hamiltonian.
Our proposal is compatible with D-Wave devices, opening up possibilities for realizing large-scale gate-based quantum computers.
arXiv Detail & Related papers (2024-02-29T12:47:29Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Verifiably Exact Solution of the Electronic Schr\"odinger Equation on
Quantum Devices [0.0]
We present an algorithm that yields verifiably exact solutions of the many-electron Schr"odinger equation.
We demonstrate the algorithm on both quantum simulators and noisy quantum computers.
arXiv Detail & Related papers (2023-03-01T19:00:00Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Estimating Phosphorescent Emission Energies in Ir(III) Complexes using
Large-Scale Quantum Computing Simulations [0.0]
We apply the iterative qubit coupled cluster (iQCC) method on classical hardware to the calculation of the transition energies in nine phosphorescent iridium complexes.
Our simulations would require a gate-based quantum computer with a minimum of 72 fully-connected and error-corrected logical qubits.
The iQCC quantum method is found to match the accuracy of the fine-tuned DFT functionals, has a better Pearson correlation coefficient, and still has considerable potential for systematic improvement.
arXiv Detail & Related papers (2021-11-07T20:02:10Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.